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Preface

Welcome to Artificial Intelligence: Foundations and Applications. This book
is a rigorous guide through the mathematical landscapes that underpin
modern intelligent systems. My goal is not just to show you how to use
AI tools, but to help you understand why they work from first principles.

We will travel from the philosophical questions of the 1950s to the deep
neural networks of today, proving theorems and deriving algorithms along
the way. I wrote this text in the first person because I view this book as a
conversation between us, a dialogue about the most fascinating subject in
human history: the creation of a mind. I have poured my passion for this
field into every chapter, hoping to share not just knowledge, but the sense
of wonder that comes from seeing a machine learn.

The Approach
In recent years, Artificial Intelligence has become accessible through high-
level libraries that allow one to build a neural network in three lines of code.
While this democratization is powerful, it often obscures the elegance of the
machinery beneath. In this book, we will not be satisfied with “black boxes.”
We will pry them open.

I have taken great care to derive the gradients of backpropagation by
hand so you can see the calculus in motion. We will solve Bellman equa-
tions together to understand how an agent plans for the future. We will
examine the singular value decomposition to understand how data can be
compressed and understood. I believe that true mastery comes not from
memorizing API calls, but from an intuition built on calculus, probability,
and linear algebra. I want you to own these concepts, not just borrow them.

The Journey
Our exploration is divided into three distinct eras of thought:

• Symbolic Intelligence: We begin in the world of clean logic and
explicit rules. We will build Intelligent Agents that search through
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mazes, play chess via adversarial search, and reason using formal
logic. This is AI defined by the manipulation of symbols.

• Statistical Learning: We then confront the messiness of the real
world. We will see how probability theory allows computers to quan-
tify uncertainty. We will explore how Machine Learning algorithms,
ranging from Linear Regression to Random Forests, extract patterns
from data.

• Neural and Generative AI: Finally, we ascend to the modern era.
We will construct Deep Neural Networks, exploring the architectures
that power Computer Vision and Natural Language Processing. We
will discuss the mechanisms behind Transformers and Large Lan-
guage Models, seeing how simple statistical prediction can give rise
to emergent reasoning.

A Note on Responsibility
As we reach the final chapters, we will step back from the mathematics to
consider the impact of what we have built. AI is no longer a theoretical cu-
riosity; it is a force that shapes economies, healthcare, and public discourse.
I care deeply about how these tools are used, and I want you to care as well.
Understanding the ethics of AI, including bias, fairness, and safety, is just
as important as understanding the gradient descent algorithm.

This subject is difficult. It requires patience and a willingness to grapple
with abstract concepts. However, the reward is a profound understanding
of the technology that will define the 21st century. I have done my best to
light the path for you.

Let us begin.

J. L.
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Chapter 1

Introduction

1.1 Our Quest for Intelligence
What is intelligence? Is it calculation? Perception? Feeling? Navigating
a complex social world? For centuries, these questions were the exclusive
domain of philosophers and theologians. In the mid-20th century, a new
kind of answer emerged, one written in code and calculus.

As we begin our journey into artificial intelligence (AI), try to see it as
more than a collection of algorithms for sorting data or recognizing images.
This is an intellectual adventure. It is the story of us trying to understand
ourselves by recreating the very capabilities that define us: perception, rea-
soning, learning, and creativity.

1.1.1 The Story of AI
The history of AI is a drama of high hopes, crushing disappointments, and
spectacular redemptions. To understand where we are going, we must look
at how we got here. It is a story that begins long before electricity.

Dreamers (Pre-1950)

The dream of artificial life is ancient. In Greek mythology, Hephaestus, the
blacksmith god, forged mechanical servants known as automata made of
gold to help him walk. In the middle ages, Al-Jazari designed programmable
musical robots. But the intellectual lineage of AI truly begins with the for-
malization of reasoning.

In the 17th century, Gottfried Wilhelm Leibniz dreamed of a calculus ra-
tiocinator, a universal language of thought where errors in reasoning would
be mere calculation errors. He famously said, “If controversies were to arise,
there would be no more need of disputation between two philosophers than
between two accountants. For it would suffice to take their pencils in their
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2 CHAPTER 1. INTRODUCTION

hands... and say to each other: Let us calculate.” This was the first vision
of symbolic AI: reducing thought to algebra.

In the 19th century, Charles Babbage designed the Analytical Engine, a
mechanical computer that could, in theory, run any program. His collabo-
rator, Ada Lovelace, realized that such a machine could manipulate not just
numbers, but symbols representing anything, such as music, logic, or art.
She is often considered the first programmer.

Then came George Boole, who in 1854 published The Laws of Thought.
He showed that logical propositions could be treated algebraically. True is
1, False is 0, AND is multiplication. This Boolean logic is the bedrock of
every computer chip in existence today.

Finally, in 1936, Alan Turing conceptualized the Universal Turing Ma-
chine, a mathematical model of a device that could compute anything that
is computable. This proved that a simple machine manipulating symbols
on a tape could simulate any other machine. The hardware didn’t matter;
the software did.

Concretizing Machines (1950-1956)

The modern era began with Alan Turing’s 1950 paper “Computing Ma-
chinery and Intelligence.” Turing sidestepped the impossible philosophical
question of whether machines can think and replaced it with an operational
one: “Can a machine communicate indistinguishably from a human?” We
call this the Turing Test.

The field was formally named in 1956 at the Dartmouth Conference.
It was organized by John McCarthy, Marvin Minsky, Nathaniel Rochester,
and Claude Shannon. Their proposal contained the audacious conjecture
that “every aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made to simulate
it.” They asked for funding for a 2-month, 10-man study, believing they
could make significant headway in one summer. They were wrong about
the timeline, but right about the direction.

The Golden Years (1956-1974)

The years following Dartmouth were filled with dazzling successes. Com-
puters solved algebra word problems (Bobrow’s STUDENT), proved theo-
rems in geometry, and learned to speak English.

In 1956, Newell and Simon introduced the Logic Theorist, a program
that proved 38 of the first 52 theorems in Whitehead and Russell’s Principia
Mathematica. It didn’t just crunch numbers; it searched for proofs using
heuristics, mimicking human problem-solving.

In 1966, Joseph Weizenbaum created ELIZA, a chatbot that mimicked
a Rogerian psychotherapist. It used simple pattern matching, yet it was
surprisingly effective.
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Listing 1.1: ELIZA Pattern Matching Logic
1 User: "I␣am␣sad"
2 Pattern: "I␣am␣<X>"
3 Response: "How␣long␣have␣you␣been␣<X>?"
4 Output: "How␣long␣have␣you␣been␣sad?"

Despite having no understanding of sadness, ELIZA convinced many users
it was empathetic. This highlighted the ELIZA Effect, our tendency to
project intelligence onto systems that are merely simulating conversation.

Robotics also advanced. Shakey the Robot (SRI, late 60s) was the first
mobile robot that could reason about its own actions. It could perceive its
world, build a map, and plan a path. However, it was agonizingly slow,
sometimes taking an hour to move a few feet as it calculated.

AI Winters (1974-1980, 1987-1993)
By the mid-1970s, the limits of these systems became apparent. They were
“brittle.” They worked on toy problems like the Blocks World but failed in
the messiness of the real world.

In 1973, the Lighthill Report in the UK offered a scathing critique. It
noted that methods like exhaustive search suffered from a combinatorial
explosion. As the problem size grew, the time to solve it grew exponen-
tially. A search algorithm that worked for 10 blocks failed for 100. Funding
dried up. This was the first AI Winter.

AI returned in the 1980s with a new paradigm: Knowledge is Power.
Instead of searching for general principles of intelligence, systems relied
on massive databases of specific, expert rules. This was the era of Expert
Systems.

• MYCIN (1970s): Diagnosed blood infections using 450 rules. It per-
formed better than junior doctors.

• XCON (1980): Configured VAX computer systems for DEC, saving
millions of dollars.

Corporations poured billions into AI. But these systems were expensive to
maintain. They couldn’t learn. If a rule was missing, they failed. When the
hype bubble burst in the late 80s, the Lisp machine market collapsed, and
the second AI Winter set in.

The Statistical Revolution (1990s-2010)
In the 1990s, AI shifted from logic-based rules to probability and statistics.
We stopped trying to hard-code the world and started trying to learn it from
data.

• Hidden Markov Models (HMMs) revolutionized speech recognition.
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• Bayesian Networks allowed rigorous reasoning under uncertainty.

• Support Vector Machines (SVMs) provided a mathematically ro-
bust way to classify data.

This era was less flashy but laid the groundwork for modern AI. It was
rigorous, mathematical, and data-driven.

Scaling Deep Learning (2012-Present)

While symbolic AI and statistical learning dominated the field, a small
group of researchers, most notably Geoffrey Hinton, Yann LeCun, and Yoshua
Bengio, kept the flame of neural networks alive. For decades, their work
was often dismissed by the mainstream AI community. But around 2012, a
“perfect storm” occurred that would change the field forever:

1. Data: The internet explosion provided massive labeled datasets, such
as ImageNet.

2. Compute: GPUs (Graphics Processing Units), originally designed for
video games, turned out to be perfect for the massive parallel matrix
multiplications required by neural networks.

3. Algorithms: Critical innovations like ReLU (Rectified Linear Unit)
activations, Dropout for regularization, and better initialization schemes
made training deep networks feasible.

The Computer Vision Breakthrough (2012-2016) The watershed mo-
ment came in 2012 at the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC). This competition involved classifying images into 1,000 di-
verse categories. Before 2012, the best systems used hand-engineered fea-
tures (like SIFT or HOG) and achieved error rates around 26%.

In 2012, a team from the University of Toronto led by Alex Krizhevsky,
Ilya Sutskever, and Geoffrey Hinton introduced AlexNet, a deep convolu-
tional neural network (CNN). AlexNet had 8 layers, 60 million parameters,
and was trained on two GPUs. It achieved a top-5 error rate of 15.3%, shat-
tering the previous record. This was the moment the industry woke up.

The Rise of Attention and Transformers (2017-2019) In 2017, a team
at Google Brain/Research (Vaswani et al.) published a paper with the unas-
suming title "Attention Is All You Need." They proposed a new architecture
called the Transformer, which dispensed with recurrence entirely. In-
stead, it used a mechanism called self-attention.

In simple terms, self-attention allows every word in a sentence to "look
at" every other word to figure out context. For example, in the sentence "The
animal didn’t cross the street because it was too tired," the model needs to
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know that "it" refers to "animal," not "street." Attention mechanisms cal-
culate a weighted sum of all other words to build a representation for the
current word.

Transformers changed everything because they were highly paralleliz-
able. You could train them on massive datasets using thousands of GPUs
simultaneously. This scalability unlocked the next phase of AI.

The Agentic Wave (2024-Present)

The release of ChatGPT was a watershed moment, but it was primarily a
conversational interface. Users would prompt, and the model would reply.
It was a static interaction. Starting in 2024, we entered the era of Agentic
AI.

The Shift: Before 2024, AI assisted humans in completing tasks. Now,
AI autonomously completes tasks for humans. As OpenAI CEO Sam Alt-
man predicted, "2025 will be the year of agents."

What Are AI Agents? An AI agent is a system that: 1. Perceives its
environment (reads emails, accesses APIs, browses the web). 2. Decides
autonomously (plans a sequence of actions). 3. Acts (sends emails, writes
and executes code, calls APIs). 4. Iterates (observes the result of its action
and corrects course if necessary).

Technical Enablers: Why did this happen now?

• Function Calling: Models like GPT-4 were trained to output struc-
tured JSON that can trigger external code.

• Reasoning Models (o1): New models that "think" before they speak
allow for complex planning over long horizons.

• Long Context Windows: With context windows exceeding 1 mil-
lion tokens (Gemini 1.5), agents can "remember" entire documenta-
tion sets or codebases.

• MCP (Model Context Protocol): Anthropic’s standard for connect-
ing AI models to data sources in a secure, unified way.

Major Platforms: We saw the rise of frameworks like LangGraph and
CrewAI, which allow developers to build multi-agent systems where spe-
cialized agents (a researcher, a writer, a coder) collaborate on complex tasks.

1.1.2 The Philosophy of Mind and AI
Before we dive into the math, we must address the philosophical founda-
tions.
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The Turing Test and Its Limits
Turing’s test is purely behavioral. If a machine acts intelligent, it is intel-
ligent. But is this enough?

• The Chinese Room Argument (Searle, 1980): Imagine a person
locked in a room with a massive rulebook. Chinese characters are
slipped under the door. The person follows the rules: "If you see shape
X, output shape Y." The person does not know Chinese. To an outside
observer, the room "understands" Chinese. But the person inside un-
derstands nothing. Searle argues that computers are merely syntax
manipulators, incapable of semantics (meaning).

This distinguishes Strong AI (machines with actual minds) from Weak AI
(machines that simulate thinking).

The Hard Problem of Consciousness
David Chalmers coined the "Hard Problem": Why does it feel like some-
thing to be a cognitive agent? We can explain how a brain processes sig-
nals (the "Easy Problems"), but explaining subjective experience (qualia)
remains elusive. Does GPT-4 have feelings? Most AI researchers say no,
viewing it as a statistical predictor. But as models become more complex,
the line blurs.

1.2 Mathematical Foundations
AI is built on a tripod of mathematics: Probability handles uncertainty,
Linear Algebra handles data, and Optimization handles learning. We need
to build these foundations carefully.

1.2.1 Probability Theory
In the real world, we rarely know anything with certainty. Sensors are
noisy, data is missing, and the future is unpredictable. Probability is the
logic of science.

Axioms and Definitions
We define a sample space Ω. A probability measure P assigns a real number
to events E ⊆ Ω satisfying the Kolmogorov axioms:

1. Non-negativity: P (E) ≥ 0 for all E.

2. Normalization: P (Ω) = 1.

3. Additivity: For disjoint events E1, E2, . . . , P (
⋃

iEi) =
∑

i P (Ei).
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From these simple axioms, all of probability theory flows. For instance,
P (A ∪B) = P (A) + P (B)− P (A ∩B) accounts for the overlap.

Conditional Probability and Independence

Conditional probability is the heart of AI reasoning. It asks: "How does my
belief in A change if I know B has happened?"

P (A|B) =
P (A ∩B)

P (B)

Conceptually, we are restricting our universe to the world where B is true,
and asking what fraction of that world is also A.

Two events are independent if knowing one tells you nothing about the
other: P (A|B) = P (A), which implies P (A ∩B) = P (A)P (B).

Crucially, events can be conditionally independent. A andB are con-
ditionally independent given C if P (A,B|C) = P (A|C)P (B|C). This struc-
ture allows us to build massive Bayesian Networks by factorizing complex
joint distributions into simpler local interactions.

Bayes’ Theorem

This is the engine of inference. It tells us how to update our hypothesis H
given evidence E.

P (H|E) =
P (E|H)P (H)

P (E)

• P (H): Prior. What we believed before seeing evidence.

• P (E|H): Likelihood. How probable is the evidence if our hypothesis
is true?

• P (H|E): Posterior. Our new belief.

• P (E): Marginal/Evidence. The total probability of the evidence un-
der all hypotheses.

Worked Example 1.1: Robot Sensor Fusion
Problem: A robot navigates a corridor. It has a prior belief that a door is
open (D) with probability P (D) = 0.3. It has a laser sensor that detects if a
door is open.

• If the door is open, the sensor reports "Open" (+) with probability 0.9
(True Positive).

• If the door is closed (¬D), the sensor falsely reports "Open" (+) with
probability 0.2 (False Positive).
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The sensor reports "Open" (+). What is the probability the door is actually
open?

Solution: We want P (D|+). Using Bayes’ Theorem:

P (D|+) =
P (+|D)P (D)

P (+)

We calculate the denominator P (+) using the Law of Total Probability:

P (+) = P (+|D)P (D) + P (+|¬D)P (¬D)

= (0.9)(0.3) + (0.2)(1− 0.3)

= 0.27 + 0.14 = 0.41

Now, substitute back:
P (D|+) =

0.27

0.41
≈ 0.659

Interpretation: Before the measurement, we were 30% sure the door was
open. After the positive reading, we are 65.9% sure. The sensor is noisy,
so we aren’t 100% sure. This is how robots "think", constantly updating
probability distributions.

Random Variables and Distributions
A random variable X is a function mapping outcomes to numbers.

• Bernoulli(p): Coin flip. P (X = 1) = p, P (X = 0) = 1 − p. E[X] = p.
Var(X) = p(1− p).

• Binomial(n, p): Number of heads in n flips. E[X] = np.

• Gaussian (Normal): The most important distribution.

f(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
Defined by mean µ and variance σ2. By the Central Limit Theorem,
sums of independent variables tend toward a Gaussian.

Maximum Likelihood Estimation (MLE)
MLE is the principle used to train most machine learning models. Given
data D, we choose parameters θ that maximize the probability of observing
that data.

θ̂MLE = argmax
θ
P (D|θ)

Usually we maximize the log-likelihood L(θ) = logP (D|θ) because it turns
products into sums, which are easier to differentiate.
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Worked Example 1.2: MLE for Gaussian
Given data x1, . . . , xn, estimate µ for a Gaussian (assume σ = 1). Solution:
LikelihoodL(µ) =

∏n
i=1

1√
2π
e−(xi−µ)2/2. Log-LikelihoodL(µ) =

∑n
i=1

(
const− (xi−µ)2

2

)
.

To maximize, take derivative w.r.t µ and set to 0:

∂L
∂µ

=

n∑
i=1

(xi − µ) = 0

∑
xi − nµ = 0 =⇒ µ̂ =

1

n

n∑
i=1

xi

The MLE for the mean is the sample average.

Maximum A Posteriori (MAP)
MAP incorporates a prior belief.

θ̂MAP = argmax
θ
P (D|θ)P (θ)

This is equivalent to MLE plus a regularization term (the prior).

1.2.2 Linear Algebra
Vectors and Matrices
Vectors are objects that can be added and scaled. The dot product x · y =
xT y = ||x||||y|| cos θ measures similarity. If the dot product is 0, vectors are
orthogonal (uncorrelated).

Matrix Calculus
To train neural networks, we need to take derivatives of vector functions.

• Gradient: ∇x(a
Tx) = a.

• Quadratic Form Gradient: ∇x(x
TAx) = (A+AT )x.

• Hessian: The matrix of second derivatives Hij = ∂2f
∂xi∂xj

. It tells us
about the curvature of the function.

Eigenvalues and SVD
Av = λv. Eigenvectors are the "axes" of the transformation A. Singular
Value Decomposition (SVD) says every matrix is a rotation, followed by a
scaling, followed by another rotation (A = UΣV T ). This is key for compres-
sion and dimensionality reduction.
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1.2.3 Optimization
Unconstrained Optimization

We want to find θ that minimizes cost J(θ). At the minimum, the gradient
∇J(θ) = 0 and the Hessian is positive definite.

Gradient Descent

We can’t always solve ∇J = 0 analytically. Instead, we iterate:

θt+1 = θt − η∇J(θt)

where η is the learning rate.
Worked Example 1.3: Optimization Pathology (Rosenbrock)

Minimize f(x, y) = (1− x)2 + 100(y − x2)2. Global min is at (1, 1). The gra-
dient is ∇f =

[
−2(1− x)− 400x(y − x2)

200(y − x2)

]
. At (0, 0), ∇f = [−2, 0]T . We move

in the x-direction. But the function has a curved valley. Simple gradient
descent bounces back and forth across the valley walls, converging slowly.
This motivates Momentum and Adam optimizers, which accumulate ve-
locity to smooth out these oscillations.

Constrained Optimization

Minimize f(x) subject to g(x) = 0. We use the Lagrangian:

L(x, λ) = f(x) + λg(x)

We solve∇L = 0. This finds points where the gradient of the cost is parallel
to the gradient of the constraint.

1.2.4 Information Theory
Entropy

Entropy measures uncertainty. For a discrete variable X:

H(X) = −
∑

p(x) log2 p(x)

Measured in bits. A fair coin has 1 bit of entropy. A biased coin has less.
Worked Example 1.4: Information Gain in Decision Trees

We have data with 50% class A, 50% class B. Entropy = 1 bit. We split
on feature F. Left branch: 100% A. Entropy = 0. Right branch: 100% B.
Entropy = 0. Weighted average entropy after split = 0. Information Gain =
Initial Entropy - Final Entropy = 1 - 0 = 1 bit. This split perfectly organized
the data.
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KL Divergence
Measures the "distance" between two distributions P and Q.

DKL(P ||Q) =
∑

P (x) log
P (x)

Q(x)

Note: It is not symmetric. DKL(P ||Q) ̸= DKL(Q||P ). In machine learning,
minimizing cross-entropy loss is equivalent to minimizing the KL diver-
gence between the predicted distribution and the true label distribution.

1.2.5 Computational Complexity
P vs NP

• P: Polynomial time. Easy to solve. (Sorting, matrix multiplication).

• NP: Nondeterministic Polynomial. Easy to verify a solution if given
one. (Sudoku, SAT).

• NP-Complete: The hardest problems in NP. (Traveling Salesman,
3-SAT).

Many AI problems (like planning) are NP-hard. This means we cannot ex-
pect to find perfect solutions efficiently. We must rely on approximations
and heuristics.

1.3 Problems and Solutions
Warm-up Problems
Exercise 1.1. Probability Axioms: Given P (A) = 0.4, P (B) = 0.5, and
P (A ∩B) = 0.1, calculate the probability of A or B occurring (P (A ∪B)).

Solution: We use the inclusion-exclusion principle from probability ax-
ioms:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Substituting the values:

P (A ∪B) = 0.4 + 0.5− 0.1 = 0.8

Interpretation: We subtract the intersection because simply adding P (A)
and P (B) counts the overlapping region twice. ■

Exercise 1.2. Conditional Probability: A bag contains 3 red balls and 2
blue balls. You draw two balls sequentially without replacement. What is
the probability the second ball is red, given the first ball was red?
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Solution: Let R1 be the event the first ball is red. Let R2 be the event the
second is red. Initially, total balls = 5 (3 Red, 2 Blue). Given R1 occurred,
we removed one red ball. Remaining state: 2 Red, 2 Blue. Total = 4.

P (R2|R1) =
Red balls remaining

Total balls remaining =
2

4
= 0.5

■

Exercise 1.3. Expected Value: A random variableX represents a reward.
P (X = 0) = 0.2, P (X = 1) = 0.5, P (X = 10) = 0.3. Calculate the expected
reward.

Solution: The definition of expected value for a discrete variable is E[X] =∑
xP (X = x).

E[X] = (0)(0.2) + (1)(0.5) + (10)(0.3)

E[X] = 0 + 0.5 + 3.0 = 3.5

Note: The expected value (3.5) is not one of the possible outcomes. It is the
long-run average. ■

Exercise 1.4. Gradient Calculation: Calculate the gradient ∇f(x, y) for
the function f(x, y) = 3x2 + 2xy + y2.

Solution: The gradient is the vector of partial derivatives: ∇f = [∂f∂x ,
∂f
∂y ]

T .
Partial w.r.t x (treat y as constant): ∂f

∂x = 6x+ 2y. Partial w.r.t y (treat x as
constant): ∂f

∂y = 2x+ 2y.

∇f(x, y) =
[
6x+ 2y
2x+ 2y

]
■

Exercise 1.5. Matrix Multiplication: GivenA =

(
1 2
3 4

)
andB =

(
5 6
7 8

)
,

compute the product C = AB.

Solution: Matrix multiplication involves dot products of rows of A with
columns of B.

c11 = (1)(5) + (2)(7) = 5 + 14 = 19

c12 = (1)(6) + (2)(8) = 6 + 16 = 22

c21 = (3)(5) + (4)(7) = 15 + 28 = 43

c22 = (3)(6) + (4)(8) = 18 + 32 = 50
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C =

(
19 22
43 50

)
■

Exercise 1.6. Independence Definition: If events A and B are indepen-
dent, prove that P (A|B) = P (A).

Solution: By definition of independence: P (A ∩ B) = P (A)P (B). By def-
inition of conditional probability: P (A|B) = P (A∩B)

P (B) . Substituting the first
into the second:

P (A|B) =
P (A)P (B)

P (B)
= P (A)

(Assuming P (B) > 0). This matches intuition: knowing B occurred gives
no new information about A. ■

Exercise 1.7. Poisson Calculation: A server receives requests at a rate
of λ = 3 per minute. What is the probability it receives exactly 1 request in
a minute?

Solution: The Poisson PMF is P (X = k) = λke−λ

k! . Here λ = 3, k = 1.

P (X = 1) =
31e−3

1!
= 3e−3 ≈ 3(0.0498) ≈ 0.149

■

Exercise 1.8. Norm Calculation: Calculate the Euclidean (L2) norm of
the vector v = [3,−4]T .

Solution: The L2 norm is defined as ||v||2 =
√∑

v2i .

||v||2 =
√
32 + (−4)2 =

√
9 + 16 =

√
25 = 5

■

Exercise 1.9. Logarithm Simplification: Simplify the expression log2(8)+
log2(4).

Solution: Using log rules: log(a)+ log(b) = log(ab). log2(8× 4) = log2(32) =
5. Alternatively: log2(23) + log2(2

2) = 3 + 2 = 5. ■

Exercise 1.10. Big-O Complexity: What is the worst-case time complex-
ity of Binary Search on a sorted list of size n?
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Solution: Binary search repeatedly divides the search interval in half. The
number of steps k required to reduce size n to 1 is given by n/2k = 1 =⇒
2k = n =⇒ k = log2 n. Thus, complexity is O(logn). ■

Standard Problems
Exercise 1.11. Bayes’ Theorem Application (Spam Filter): An email
spam filter knows that 40% of all emails are spam. The word "free" appears
in 75% of spam emails and only 8% of legitimate emails. An email arrives
containing the word "free". What is the probability it is spam?

Solution: Let S be the event "email is Spam". Let F be the event "email
contains Free". We are given: P (S) = 0.40 =⇒ P (¬S) = 0.60 (Legitimate).
P (F |S) = 0.75 (Likelihood of word given spam). P (F |¬S) = 0.08 (Likelihood
of word given ham).

We want the posterior P (S|F ). Using Bayes’ Theorem:

P (S|F ) = P (F |S)P (S)
P (F )

First, calculate the marginal probability of seeing "free", P (F ), using Total
Probability:

P (F ) = P (F |S)P (S) + P (F |¬S)P (¬S)

P (F ) = (0.75)(0.40) + (0.08)(0.60) = 0.30 + 0.048 = 0.348

Now solve for posterior:

P (S|F ) = 0.30

0.348
≈ 0.862

Result: There is an 86.2% chance the email is spam. ■

Exercise 1.12. MLE Derivation (Exponential): Given n independent
samples x1, . . . , xn from an exponential distribution f(x;λ) = λe−λx, derive
the Maximum Likelihood Estimator for λ.

Solution: 1. Write the Likelihood function (joint probability of data):

L(λ) =

n∏
i=1

λe−λxi = λne−λ
∑n

i=1 xi

2. Write the Log-Likelihood (easier to differentiate):

L(λ) = lnL(λ) = n lnλ− λ
n∑

i=1

xi
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3. Differentiate w.r.t λ and set to zero:
dL
dλ

=
n

λ
−

n∑
i=1

xi = 0

4. Solve for λ:
n

λ
=
∑

xi =⇒ λMLE =
n∑
xi

=
1

x̄

Result: The MLE for the rate parameter is the reciprocal of the sample
mean. ■

Exercise 1.13. Eigenvalues and Eigenvectors: Find the eigenvalues
and corresponding eigenvectors of the matrix A =

(
4 1
2 3

)
.

Solution: 1. Find eigenvalues λ by solving det(A− λI) = 0:

det

(
4− λ 1
2 3− λ

)
= (4− λ)(3− λ)− 2 = 0

λ2 − 7λ+ 12− 2 = λ2 − 7λ+ 10 = 0

Factoring: (λ− 5)(λ− 2) = 0. So λ1 = 5, λ2 = 2.
2. Find eigenvector for λ1 = 5. Solve (A− 5I)v = 0:(

−1 1
2 −2

)(
x
y

)
=

(
0
0

)
Equation: −x+ y = 0 =⇒ y = x. Eigenvector v1 = [1, 1]T .

3. Find eigenvector for λ2 = 2. Solve (A− 2I)v = 0:(
2 1
2 1

)(
x
y

)
=

(
0
0

)
Equation: 2x+ y = 0 =⇒ y = −2x. Eigenvector v2 = [1,−2]T . ■

Exercise 1.14. Gradient Descent (Manual Tracing): Minimize f(x) =
3x2 − 12x + 15 using gradient descent. Start at x0 = 0 with learning rate
η = 0.1. Calculate the first 3 iterations.

Solution: 1. Compute gradient: f ′(x) = 6x − 12. 2. Iteration 1 (t = 0):
Current x0 = 0. Gradient f ′(0) = −12. Update: x1 = x0 − ηf ′(x0) = 0 −
0.1(−12) = 1.2. 3. Iteration 2 (t = 1): Current x1 = 1.2. Gradient f ′(1.2) =
6(1.2)−12 = 7.2−12 = −4.8. Update: x2 = 1.2−0.1(−4.8) = 1.2+0.48 = 1.68.
4. Iteration 3 (t = 2): Current x2 = 1.68. Gradient f ′(1.68) = 6(1.68)− 12 =
10.08 − 12 = −1.92. Update: x3 = 1.68 − 0.1(−1.92) = 1.68 + 0.192 = 1.872.
Observation: The exact minimum is at x = 2 (where 6x − 12 = 0). The
algorithm is converging toward 2 (0→ 1.2→ 1.68→ 1.872). ■
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Exercise 1.15. Hessian Matrix: Compute the Hessian matrix for f(x, y) =
x3 + y3 − 3xy.

Solution: The Hessian H is the matrix of second partial derivatives. First
derivatives: fx = 3x2 − 3y fy = 3y2 − 3x

Second derivatives: fxx = ∂
∂x (3x

2 − 3y) = 6x fyy = ∂
∂y (3y

2 − 3x) = 6y

fxy = ∂
∂y (3x

2 − 3y) = −3 fyx = −3 (Symmetry holds).
Hessian Matrix:

H =

(
6x −3
−3 6y

)
■

Exercise 1.16. Covariance Calculation: Given random variables X and
Y where E[X] = 1,E[Y ] = 2, and E[XY ] = 3. Calculate the Covariance
Cov(X,Y ).

Solution: Formula: Cov(X,Y ) = E[XY ] − E[X]E[Y ]. Substitute values:
Cov(X,Y ) = 3 − (1)(2) = 3 − 2 = 1. Interpretation: Since covariance is
positive, X and Y tend to move in the same direction. ■

Exercise 1.17. Lagrange Multipliers: Minimize f(x, y) = x2+y2 subject
to the constraint x+ y = 1.

Solution: 1. Form Lagrangian: L(x, y, λ) = x2 + y2 + λ(x + y − 1). 2.
Take gradients w.r.t x, y, λ: ∂L

∂x = 2x + λ = 0 =⇒ x = −λ/2 ∂L
∂y = 2y +

λ = 0 =⇒ y = −λ/2 ∂L
∂λ = x + y − 1 = 0 3. Substitute x and y into

constraint: (−λ/2) + (−λ/2) = 1 =⇒ −λ = 1 =⇒ λ = −1. 4. Solve for x, y:
x = −(−1)/2 = 0.5 y = −(−1)/2 = 0.5 Result: Minimum is at (0.5, 0.5). ■

Exercise 1.18. Naive Bayes Assumption: Explain the mathematical sim-
plification made by the Naive Bayes classifier for identifyingP (X1, . . . , Xn|Y ).

Solution: The full joint probability P (X1, . . . , Xn|Y ) is computationally ex-
pensive because featuresXi might be correlated. The "Naive" assumption is
that all features Xi are conditionally independent given the class label
Y . Mathematically:

P (X1, . . . , Xn|Y ) ≈
n∏

i=1

P (Xi|Y )

This reduces the number of parameters to estimate from exponential (2n for
binary features) to linear (n). ■
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Exercise 1.19. Gaussian KL Divergence: Calculate the KL Divergence
DKL(P ||Q) between two univariate Gaussians: P ∼ N (µ = 0, σ2 = 1) and
Q ∼ N (µ = 1, σ2 = 1).

Solution: The formula for KL divergence between two Gaussians p(x) =
N (µ1, σ

2
1) and q(x) = N (µ2, σ

2
2) is:

DKL(p||q) = log
σ2
σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2

Substitute µ1 = 0, σ1 = 1, µ2 = 1, σ2 = 1:

DKL = log(1) +
1 + (0− 1)2

2(1)
− 0.5

DKL = 0 +
2

2
− 0.5 = 1− 0.5 = 0.5 nats

■

Exercise 1.20. Singular Value Decomposition (SVD): Compute the SVD
of the matrix A =

(
1 1
0 0

)
.

Solution: We want A = UΣV T . 1. Find V and Σ using ATA: ATA =(
1 0
1 0

)(
1 1
0 0

)
=

(
1 1
1 1

)
. Eigenvalues of ATA: det

(
1− λ 1
1 1− λ

)
= (1−

λ)2 − 1 = λ2 − 2λ = 0. λ1 = 2, λ2 = 0. Singular values Σ: σ1 =
√
2, σ2 = 0.

Eigenvectors (normalized): For λ1 = 2: v1 = 1√
2
[1, 1]T . For λ2 = 0: v2 =

1√
2
[−1, 1]T . So V = 1√

2

(
1 −1
1 1

)
.

2. Find U using ui = 1
σi
Avi: u1 = 1√

2

(
1 1
0 0

)(
1/
√
2

1/
√
2

)
= 1

2

(
2
0

)
=

(
1
0

)
.

u2 must be orthogonal to u1, so u2 =

(
0
1

)
. Final SVD: U =

(
1 0
0 1

)
,Σ =(√

2 0
0 0

)
, V T = 1√

2

(
1 1
−1 1

)
. ■

Exercise 1.21. Information Gain (Decision Tree): A dataset has 8 ex-
amples: 4 Positive, 4 Negative. We consider a split that divides the data
into two buckets: Bucket 1: 4 Positive, 0 Negative. Bucket 2: 0 Positive, 4
Negative. Calculate the Information Gain.

Solution: 1. Entropy of parentH(Y ): p+ = 0.5, p− = 0.5. H(Y ) = −0.5 log2 0.5−
0.5 log2 0.5 = 1 bit.
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2. Entropy of children: Bucket 1 (Y1): p+ = 1, p− = 0. H(Y1) = −1 log 1−
0 = 0. Bucket 2 (Y2): p+ = 0, p− = 1. H(Y2) = 0.

3. Weighted Average Entropy: Hchild = 4
8H(Y1) +

4
8H(Y2) = 0.5(0) +

0.5(0) = 0.
4. Information Gain: IG = H(Parent) − Hchild = 1 − 0 = 1 bit. Inter-

pretation: This is the maximum possible gain; the split perfectly separated
the classes. ■

Exercise 1.22. Vector Calculus Identity: Derive the gradient with re-
spect to vector x of the quadratic form f(x) = xTAx.

Solution: Let f(x) =
∑

i

∑
j xiAijxj . Take derivative w.r.t xk: ∂f

∂xk
=

∂
∂xk

(
xkAkkxk +

∑
j ̸=k xkAkjxj +

∑
i̸=k xiAikxk

)
Using product rule on the

first term and linearity on the sums: = 2Akkxk +
∑

j ̸=k Akjxj +
∑

i̸=k xiAik

Combine the sum terms: =
∑

j Akjxj +
∑

iAikxi = (Ax)k + (ATx)k. Thus,
the full gradient vector is: ∇x(x

TAx) = Ax+ATx = (A+AT )x. ■

Exercise 1.23. Complexity Classes: Prove that the Boolean Satisfiability
problem (SAT) is in the complexity class NP.

Solution: To be in NP, a problem must be verifiable in polynomial time.
Given an instance of SAT (a logical formula) and a proposed certificate (a
specific assignment of Truth/False values to variables), we need to check
if the assignment makes the formula true. This check involves iterating
through the clauses and verifying each one. If the formula has m clauses
and n variables, verification takes O(m ·n) time, which is polynomial. Since
we can verify a "yes" answer efficiently, SAT is in NP. ■

Exercise 1.24. Probability Inequality: Prove Boole’s Inequality: P (A ∪
B) ≤ P (A) + P (B).

Solution: From the axioms: P (A ∪ B) = P (A) + P (B) − P (A ∩ B). Since
probabilities are non-negative, P (A∩B) ≥ 0. Therefore, we are subtracting
a non-negative number from the sum. P (A ∪B) ≤ P (A) + P (B). ■

Exercise 1.25. Bernoulli Variance: Derive the variance of a Bernoulli(p)
random variable X.

Solution: Definition of Variance: Var(X) = E[X2] − (E[X])2. 1. Calculate
E[X]: X takes value 1 with prob p, 0 with prob 1−p. E[X] = 1(p)+0(1−p) = p.
2. Calculate E[X2]: Since 12 = 1 and 02 = 0, X2 behaves exactly like X.
E[X2] = 12(p) + 02(1 − p) = p. 3. Calculate Variance: Var(X) = p − p2 =
p(1− p). ■
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Challenge Problems
Exercise 1.26. The Monty Hall Problem: Formalize the Monty Hall
problem and prove using Bayes’ Theorem that switching doors is the op-
timal strategy.

Solution: LetCi be the event "Car is behind door i". P (Ci) = 1/3. LetHj be
the event "Host opens door j". Assume you choose Door 1. The Host opens
Door 3. We want to compare P (C1|H3) (Staying) vs P (C2|H3) (Switching).

Calculate Likelihoods P (H3|Ci): 1. If car is behind 1 (C1): Host can
open 2 or 3. Assume random choice. P (H3|C1) = 1/2. 2. If car is behind
2 (C2): Host MUST open 3 (can’t open your door 1, can’t reveal car at 2).
P (H3|C2) = 1. 3. If car is behind 3 (C3): Host cannot open 3. P (H3|C3) = 0.

Use Bayes’ Theorem: P (C1|H3) ∝ P (H3|C1)P (C1) = (1/2)(1/3) = 1/6.
P (C2|H3) ∝ P (H3|C2)P (C2) = (1)(1/3) = 1/3.

Normalize (sum is 1/6+1/3 = 3/6 = 1/2): P (C1|H3) = (1/6)/(1/2) = 1/3.
(Stay) P (C2|H3) = (1/3)/(1/2) = 2/3. (Switch) Conclusion: Switching
doubles your probability of winning. ■

Exercise 1.27. Curse of Dimensionality: Prove that as dimension d →
∞, the fraction of the volume of a hypersphere concentrated in a thin shell
of thickness ϵ near the surface approaches 1.

Solution: The volume of a d-dimensional hypersphere of radius r is V (r) =
Cdr

d for some constant Cd. Consider the volume of the inner sphere of ra-
dius 1− ϵ: V (1− ϵ) = Cd(1− ϵ)d. The total volume of the unit sphere (r = 1)
is V (1) = Cd1

d = Cd. The volume of the shell is Vshell = V (1) − V (1 − ϵ) =
Cd[1− (1− ϵ)d]. The fraction of volume in the shell is:

Vshell
V (1)

=
Cd[1− (1− ϵ)d]

Cd
= 1− (1− ϵ)d

As d → ∞, since (1 − ϵ) < 1, the term (1 − ϵ)d → 0. Thus, the fraction
→ 1. Implication: In high dimensions, "neighborhoods" don’t really exist;
all points are far apart and near the boundary. ■

Exercise 1.28. Jensen’s Inequality: Use Jensen’s Inequality (E[f(X)] ≥
f(E[X]) for convex functions) to prove that DKL(P ||Q) ≥ 0.

Solution: DKL(P ||Q) =
∑
P (x) log P (x)

Q(x) = −
∑
P (x) log Q(x)

P (x) . Let f(t) =

− log(t). This is a convex function. We can view the sum as an expectation
with respect to distribution P : EP [− log Q(X)

P (X) ]. By Jensen’s Inequality:

EP [− log
Q

P
] ≥ − logEP

[
Q(X)

P (X)

]
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Evaluate the inner expectation:

EP

[
Q(X)

P (X)

]
=
∑

P (x)
Q(x)

P (x)
=
∑

Q(x) = 1

So, DKL ≥ − log(1) = 0. ■

Exercise 1.29. Eigenvalue Bounds: Prove that for a symmetric matrix
A, the maximum eigenvalue λmax is given by max||x||=1 x

TAx.

Solution: SinceA is symmetric, it has an orthonormal basis of eigenvectors
v1, . . . , vn with real eigenvalues λ1 ≥ · · · ≥ λn. Any vector x with ||x|| = 1
can be written as x =

∑
civi, where

∑
c2i = 1. Then:

xTAx = (
∑

civi)
TA(

∑
cjvj) = (

∑
civi)

T (
∑

cjλjvj)

Due to orthonormality (vTi vj = 0 if i ̸= j, 1 if i = j):

=
∑

c2iλi

Since λi ≤ λmax: ∑
c2iλi ≤

∑
c2iλmax = λmax

∑
c2i = λmax

The maximum is achieved when c1 = 1 (i.e., x = v1). ■

Exercise 1.30. Gaussian Mixture Models (GMM) MLE: Why is there no
closed-form Maximum Likelihood Estimator for the parameters of a Gaus-
sian Mixture Model?

Solution: A GMM PDF is a sum: p(x) =
∑

k πkN (x|µk,Σk). The log-
likelihood involves the log of a sum:

L =
∑
i

log

(∑
k

πkN (xi|µk,Σk)

)

The logarithm cannot push inside the summation over k. When we differ-
entiate w.r.t µk and set to zero, the resulting equations are coupled and
transcendental, preventing an algebraic solution. This necessitates itera-
tive algorithms like Expectation-Maximization (EM). ■

Exercise 1.31. Convexity of Intersection: Prove that the intersection of
two convex sets A and B is also a convex set.
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Solution: Let C = A∩B. To prove C is convex, pick any two points x, y ∈ C
and θ ∈ [0, 1]. We must show z = θx + (1 − θ)y ∈ C. 1. Since x, y ∈ C, then
x, y ∈ A and x, y ∈ B. 2. Since A is convex, z ∈ A. 3. Since B is convex,
z ∈ B. 4. Therefore, z ∈ A ∩B, which is C. ■

Exercise 1.32. VC Dimension: Explain the concept of VC Dimension us-
ing linear classifiers in 2D.

Solution: The Vapnik-Chervonenkis (VC) dimension measures the capac-
ity of a hypothesis class. It is the size of the largest set of points that can be
"shattered" (classified in all possible 2N ways) by the classifier. For 2D lines:
- 3 points: Can be shattered (trivial to draw lines separating any subset). -
4 points: Cannot be shattered (consider the XOR configuration: 2 positive
points diagonally opposite, 2 negative points diagonally opposite. No single
line can separate them). Thus, VC Dimension of 2D linear classifiers is 3.
■

Exercise 1.33. Graph Spectra: How do the eigenvalues of the Graph
Laplacian matrix relate to clustering?

Solution: The Graph Laplacian is L = D − A (Degree matrix - Adja-
cency matrix). The multiplicity of the eigenvalue 0 equals the number of
connected components in the graph. The second smallest eigenvalue (the
"Fiedler value") and its eigenvector provide a continuous approximation to
the normalized min-cut problem. Thresholding this eigenvector allows us to
partition the graph into two well-connected clusters with few edges between
them. This is the basis of Spectral Clustering. ■

Programming Exercises
Exercise 1.34. Gradient Descent: Write a Python script to minimize
f(x, y) = x2 + 4y2 − 2x− 8y.

Solution:

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def grad(x, y):
5 return np.array ([2*x - 2, 8*y - 8])
6

7 cur = np.array ([5.0, 5.0]) # Start
8 eta = 0.1 # Learning rate
9 path = [cur.copy()]
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10

11 for i in range (50):
12 g = grad(cur[0], cur [1])
13 cur -= eta * g
14 path.append(cur.copy())
15

16 print(f"Converged␣to:␣{cur}")
17 # Plotting code omitted for brevity

■

Exercise 1.35. Naive Bayes: Implement a simple Naive Bayes classifier
using Python dictionaries.

Solution:
1 # Pseudocode implementation
2 class NaiveBayes:
3 def fit(self , X, y):
4 self.probs = {}
5 self.priors = {}
6 # Calculate P(Word|Class) and P(Class)
7 # Use Laplace smoothing (add -1)
8

9 def predict(self , text):
10 # Calculate sum of log probabilities
11 # Return argmax class

■

Exercise 1.36. Monte Carlo Pi Estimation:

Solution:
1 import random
2 inside = 0
3 total = 10000
4 for _ in range(total):
5 x = random.random ()
6 y = random.random ()
7 if x*x + y*y <= 1.0:
8 inside += 1
9 pi_est = 4 * inside / total

10 print(f"Pi␣estimate:␣{pi_est}")

■

Exercise 1.37. Eigenfaces (PCA):
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Solution:

1 from sklearn.decomposition import PCA
2 from sklearn.datasets import fetch_lfw_people
3 # Load faces
4 data = fetch_lfw_people(min_faces_per_person =70)
5 # Apply PCA
6 pca = PCA(n_components =150, whiten=True).fit(data.data)
7 # Components are the ’Eigenfaces ’
8 eigenfaces = pca.components_.reshape ((150, 62, 47))

■

Exercise 1.38. SAT Solver: Implement a basic recursive solver.

Solution:

1 def solve_sat(formula , assignment):
2 if not formula: return True # All clauses satisfied
3 if [] in formula: return False # Empty clause (failure)
4

5 # Pick a literal
6 literal = list(formula [0]) [0]
7

8 # Try setting true
9 new_form = simplify(formula , literal)

10 if solve_sat(new_form , assignment + [literal ]): return
True

11

12 # Try setting false
13 new_form = simplify(formula , -literal)
14 if solve_sat(new_form , assignment + [-literal ]): return

True
15

16 return False

■

Proof Problems
Exercise 1.39. Entropy Property: Prove H(X) ≤ log |X|, with equality
iff X is uniform.

Solution: We maximize H(p) = −
∑
pi log pi subject to

∑
pi = 1. Using

Lagrange multipliers: L = −
∑
pi log pi+λ(

∑
pi−1). ∂L

∂pi
= −1−ln pi+λ = 0.

ln pi = λ − 1 =⇒ pi = eλ−1. Since pi depends only on λ, all pi are equal.
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∑
pi = 1 =⇒ n · p = 1 =⇒ p = 1/n. Max entropy is −

∑
1
n log 1

n =
−n( 1n (− logn)) = logn. ■

Exercise 1.40. Cross-Entropy Convexity: Prove that the cross-entropy
H(p, q) is convex with respect to q.

Solution: H(p, q) = −
∑

x p(x) log q(x). This is a linear combination of func-
tions f(q) = − log q. The second derivative of − log q is 1/q2, which is strictly
positive for q > 0. Since the second derivative is positive, − log q is convex.
A positive weighted sum of convex functions is convex. Thus, cross-entropy
is convex in q. ■

Exercise 1.41. Gradient Descent Convergence: Sketch a proof that
Gradient Descent converges for strongly convex functions.

Solution: Assume f is µ-strongly convex and L-smooth (gradient is Lips-
chitz). Consider the distance to the optimum: ||xk+1 − x∗||2. xk+1 = xk −
η∇f(xk). Expand ||xk − η∇f(xk)− x∗||2. Using strong convexity properties
((∇f(x)−∇f(y))T (x− y) ≥ µ||x− y||2), we can bound the new distance. We
arrive at ||xk+1−x∗||2 ≤ (1−ηµ)||xk−x∗||2. Since (1−ηµ) < 1, the distance
contracts geometrically. ■

Exercise 1.42. Matrix Rank: Prove that row rank equals column rank
for any matrix A.

Solution: LetR be the row space and C be the column space. When we per-
form Gaussian elimination to get Row Reduced Echelon Form (RREF), the
row operations are linear combinations, so the row space remains invariant.
The dimension of the row space is the number of non-zero rows (pivots). The
column space changes, but the dependence relationships between columns
are preserved. The pivot columns form a basis for the column space. The
number of pivot columns equals the number of non-zero rows. Therefore,
dim(Row Space) = dim(Col Space). ■

Exercise 1.43. Markov’s Inequality: Prove P (X ≥ a) ≤ E[X]
a for a non-

negative random variable X.

Solution: E[X] =
∫∞
0
xf(x)dx. Split the integral at a: E[X] =

∫ a

0
xf(x)dx+∫∞

a
xf(x)dx. Since X ≥ 0, the first term is ≥ 0. E[X] ≥

∫∞
a
xf(x)dx. In the

range [a,∞), x ≥ a. So: E[X] ≥
∫∞
a
af(x)dx = a

∫∞
a
f(x)dx. The integral∫∞

a
f(x)dx is exactly P (X ≥ a). Therefore, E[X] ≥ aP (X ≥ a). Rearranging

gives P (X ≥ a) ≤ E[X]/a. ■



Chapter 2

Intelligent Agents

2.1 Introduction to Agents
2.1.1 Historical Perspective
In the classical view of AI (Russell & Norvig), an agent is anything that
perceives its environment through sensors and acts upon that environment
through actuators. This definition covered everything from a thermostat
to a complex robot. The agent function maps percept sequences to actions:
f : P∗ → A.

2.1.2 Modern Definition
In the era of Large Language Models (LLMs), the definition has evolved sig-
nificantly. A modern AI agent is a system that uses an LLM as a "cognitive
engine" to reason about how to solve a problem through iterative interaction
with its environment.

Modern Agent Components:

• Sensors: APIs, web scrapers, file readers, database queries, vision
models

• Actuators: Function calls, database queries, code execution, file I/O,
API requests

• Environment: The digital world (internet, codebases, operating sys-
tems, cloud services)

• Cognitive Engine: LLM with prompting strategies, memory sys-
tems, and reasoning frameworks

Spectrum of Agency:

25
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• Level 0 - Chatbot: Low agency. Stateless single-turn responses. No
tool use.

• Level 1 - Tool-Use LLM: Medium agency. Single-round tool selection
and usage.

• Level 2 - Iterative Agent: High agency. Multi-step reasoning with
error recovery.

• Level 3 - Autonomous Agent: Very high agency. Long-running,
self-directed goal pursuit over hours/days.

• Level 4 - Multi-Agent System: Coordinated teams with specializa-
tion and communication protocols.

2.1.3 PEAS Framework Extended
The PEAS framework (Performance, Environment, Actuators, Sensors) re-
mains fundamental but must be updated for modern contexts.

Example 1: AI Customer Service Agent

• Performance: Customer satisfaction (CSAT), average resolution time,
first-contact resolution rate, escalation rate

• Environment: Ticketing system (Jira/Zendesk), CRM (Salesforce),
Knowledge Base, Email, Chat. Properties: Partially observable, Stochas-
tic, Sequential, Dynamic, Discrete

• Actuators: Send emails, update ticket status, issue refunds via API,
schedule callbacks, escalate to human agents

• Sensors: Read ticket text, query order history database, check refund
policy, sentiment analysis, customer history retrieval

Example 2: Autonomous Research Agent

• Performance: Citation accuracy, comprehensiveness, novelty of in-
sights, research depth

• Environment: Academic databases (ArXiv, PubMed), web, local doc-
ument storage, citation networks

• Actuators: Database queries, web scraping, PDF extraction, note-
taking, citation graph construction

• Sensors: Document readers, metadata extractors, semantic search,
relevance scoring models
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2.2 Agent Architectures
2.2.1 Classical Architectures
Simple Reflex Agents
Structure: action = f(current percept)

Classical: Thermostat with rule: If temp < 70F , turn on heat.
Modern: Rule-based chatbot with intent classification:

1 def reflex_agent(user_input):
2 intent = classify_intent(user_input)
3 if intent == "greeting":
4 return "Hello!␣How␣can␣I␣help␣you?"
5 elif intent == "farewell":
6 return "Goodbye!␣Have␣a␣great␣day!"
7 # ... more rules

Limitations: No memory, cannot handle novel situations, limited adapt-
ability.

Model-Based Reflex Agents
Structure: Maintains internal state st updated by transition model.

Classical: Robot with SLAM (Simultaneous Localization and Mapping).
Modern: Conversational AI with context window:

1 class ModelBasedAgent:
2 def __init__(self):
3 self.conversation_history = []
4

5 def act(self , user_input):
6 self.conversation_history.append ({"role": "user", "

content": user_input })
7 response = llm.generate(self.conversation_history)
8 self.conversation_history.append ({"role": "assistant

", "content": response })
9 return response

Goal-Based Agents
Structure: Explicit goal representation + search/planning.

Classical: GPS navigation with A* search to destination.
Modern: Coding agent with test-driven development:

1 class GoalBasedCodingAgent:
2 def __init__(self , goal):
3 self.goal = goal # e.g., "Pass all unit tests"
4
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5 def is_goal_satisfied(self):
6 return run_tests () == "All␣tests␣passed"
7

8 def act(self):
9 while not self.is_goal_satisfied ():

10 error_log = get_test_failures ()
11 fix = plan_fix(error_log)
12 apply_fix(fix)

Utility-Based Agents
Structure: Maximize expected utility E[U(s)].

Classical: Stock trading bot maximizing profit with risk constraints.
Modern: RLHF-tuned LLM maximizing human preference scores:

max
θ

E(x,y)∼D[rϕ(x, yθ)]− βDKL[πθ∥πref]

2.3 LLM-Based Agent Architectures
2.3.1 The ReAct Pattern
ReAct (Reason + Act) interleaves reasoning traces with action execution,
enabling error recovery and dynamic adaptation.

Formal Structure:

Thoughtt = LLM(context, observations<t)

Actiont = LLM(Thoughtt)
Observationt = Environment(Actiont)

Advanced Implementation:
1 class ReActAgent:
2 def __init__(self , llm , tools , max_steps =10):
3 self.llm = llm
4 self.tools = tools
5 self.max_steps = max_steps
6 self.trajectory = []
7

8 def run(self , task):
9 context = f"Task:␣{task}\n"

10

11 for step in range(self.max_steps):
12 # Reasoning step
13 thought = self.llm.generate(
14 context + "Thought:",
15 stop=["\nAction:"]
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16 )
17 context += f"Thought:␣{thought }\n"
18

19 # Action selection
20 action = self.llm.generate(
21 context + "Action:",
22 stop=["\nObservation:"]
23 )
24 context += f"Action:␣{action }\n"
25

26 # Execute action
27 if action.startswith("finish"):
28 return self.extract_answer(action)
29

30 observation = self.execute_tool(action)
31 context += f"Observation:␣{observation }\n"
32

33 self.trajectory.append ({
34 "thought": thought ,
35 "action": action ,
36 "observation": observation
37 })
38

39 return "Max␣steps␣reached␣without␣solution"
40

41 def execute_tool(self , action_str):
42 # Parse action_str to extract tool name and

arguments
43 tool_name , args = self.parse_action(action_str)
44 if tool_name in self.tools:
45 return self.tools[tool_name ](** args)
46 return "Error:␣Tool␣not␣found"

2.3.2 Advanced Planning Strategies
Chain-of-Thought (CoT)

Mechanism: Explicit intermediate reasoning steps.
Few-Shot Prompting:

1 Q: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls.

2 Each can has 3 tennis balls. How many tennis balls does
he have now?

3 A: Roger started with 5 balls. 2 cans 3 balls per can = 6
balls.

4 5 + 6 = 11. The answer is 11.
5
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6 Q: [Your question here]
7 A: Let ’s think step by step.

Tree of Thoughts (ToT)

Algorithm: Explores multiple reasoning paths with backtracking.

1 class TreeOfThoughts:
2 def __init__(self , llm , evaluator , branching_factor =3):
3 self.llm = llm
4 self.evaluator = evaluator # Scores partial

solutions
5 self.branching_factor = branching_factor
6

7 def solve(self , problem , max_depth =5):
8 root = Node(state=problem , path =[])
9 frontier = PriorityQueue ()

10 frontier.put((-float(’inf’), root))
11

12 while not frontier.empty ():
13 score , node = frontier.get()
14

15 if self.is_solution(node):
16 return node.path
17

18 if len(node.path) >= max_depth:
19 continue
20

21 # Generate multiple reasoning branches
22 thoughts = self.llm.generate_multiple(
23 node.state ,
24 n=self.branching_factor
25 )
26

27 for thought in thoughts:
28 new_state = self.apply_thought(node.state ,

thought)
29 new_node = Node(
30 state=new_state ,
31 path=node.path + [thought]
32 )
33 score = self.evaluator.score(new_node)
34 frontier.put((-score , new_node))
35

36 return None # No solution found
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Reflexion

Self-Improvement Loop: Agent critiques its own performance.

1 class ReflexionAgent:
2 def __init__(self , llm , environment):
3 self.llm = llm
4 self.environment = environment
5 self.memory = [] # Stores (trajectory , reflection)

pairs
6

7 def solve_with_reflection(self , task , max_trials =3):
8 for trial in range(max_trials):
9 # Attempt task

10 trajectory = self.attempt_task(task)
11 success = self.environment.evaluate(trajectory)
12

13 if success:
14 return trajectory
15

16 # Reflect on failure
17 reflection = self.llm.generate(
18 f"Task:␣{task}\n"
19 f"Attempt:␣{trajectory }\n"
20 f"Result:␣Failed\n"
21 f"Reflect:␣What␣went␣wrong␣and␣how␣can␣we␣

improve?"
22 )
23

24 self.memory.append ({
25 "trajectory": trajectory ,
26 "reflection": reflection ,
27 "trial": trial
28 })
29

30 return None
31

32 def attempt_task(self , task):
33 # Include past reflections in context
34 context = self.format_memory ()
35 context += f"Task:␣{task}\n"
36 context += "Use␣past␣reflections␣to␣avoid␣previous␣

mistakes .\n"
37

38 return self.execute_react_loop(context)
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2.3.3 Multi-Agent Systems

Hierarchical Multi-Agent Architecture

1 class ManagerAgent:
2 def __init__(self , llm , worker_agents):
3 self.llm = llm
4 self.workers = worker_agents
5

6 def decompose_task(self , task):
7 prompt = f"""
8 ␣␣␣␣␣␣␣␣Break␣down␣this␣task␣into␣subtasks:
9 ␣␣␣␣␣␣␣␣{task}

10

11 ␣␣␣␣␣␣␣␣Assign␣each␣subtask␣to␣one␣of␣these␣workers:
12 ␣␣␣␣␣␣␣␣{list(self.workers.keys())}
13

14 ␣␣␣␣␣␣␣␣Return␣JSON␣format:
15 ␣␣␣␣␣␣␣␣{{"subtasks":␣[{{"task":␣"...",␣"worker":␣"..."}}]}}
16 ␣␣␣␣␣␣␣␣"""
17 return self.llm.generate(prompt , format="json")
18

19 def execute(self , task):
20 plan = self.decompose_task(task)
21 results = {}
22

23 for subtask in plan["subtasks"]:
24 worker_name = subtask["worker"]
25 worker_task = subtask["task"]
26 results[worker_name] = self.workers[worker_name

]. execute(worker_task)
27

28 # Synthesize results
29 final_output = self.synthesize(results)
30 return final_output
31

32 class WorkerAgent:
33 def __init__(self , llm , role , tools):
34 self.llm = llm
35 self.role = role
36 self.tools = tools
37

38 def execute(self , task):
39 prompt = f"As␣a␣{self.role},␣{task}"
40 return ReActAgent(self.llm , self.tools).run(prompt)
41

42 # Usage
43 manager = ManagerAgent(llm , {
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44 "researcher": WorkerAgent(llm , "Researcher",
research_tools),

45 "writer": WorkerAgent(llm , "Writer", writing_tools),
46 "critic": WorkerAgent(llm , "Critic", analysis_tools)
47 })
48

49 result = manager.execute("Write␣a␣comprehensive␣report␣on␣
quantum␣computing")

Debate-Based Multi-Agent System

1 class DebateSystem:
2 def __init__(self , agents , judge_llm , rounds =3):
3 self.agents = agents
4 self.judge = judge_llm
5 self.rounds = rounds
6

7 def debate(self , question):
8 proposals = [agent.initial_proposal(question) for

agent in self.agents]
9 debate_history = []

10

11 for round_num in range(self.rounds):
12 critiques = []
13 for i, agent in enumerate(self.agents):
14 other_proposals = [p for j, p in enumerate(

proposals) if j != i]
15 critique = agent.critique(question ,

other_proposals , debate_history)
16 critiques.append(critique)
17

18 debate_history.append ({
19 "round": round_num ,
20 "proposals": proposals.copy(),
21 "critiques": critiques
22 })
23

24 # Agents revise based on critiques
25 proposals = [
26 agent.revise(question , proposals[i],

critiques , debate_history)
27 for i, agent in enumerate(self.agents)
28 ]
29

30 # Judge selects best answer
31 winner = self.judge.select_best(question , proposals ,

debate_history)
32 return winner
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2.4 Modern Agent Applications
2.4.1 Coding Agents
State-of-the-Art Systems:

• Devin (Cognition Labs): Autonomous software engineer

• GitHub Copilot Workspace: Multi-file code generation

• SWE-agent: Specialized for GitHub issue resolution

Advanced Coding Agent Architecture:
1 class AdvancedCodingAgent:
2 def __init__(self , llm , repository_path):
3 self.llm = llm
4 self.repo = Repository(repository_path)
5 self.tools = {
6 "read_file": self.repo.read_file ,
7 "write_file": self.repo.write_file ,
8 "run_tests": self.repo.run_tests ,
9 "run_linter": self.repo.run_linter ,

10 "git_commit": self.repo.git_commit ,
11 "search_codebase": self.repo.search ,
12 "get_file_structure": self.repo.get_structure
13 }
14

15 def solve_issue(self , issue_description):
16 # Phase 1: Understanding
17 context = self.gather_context(issue_description)
18

19 # Phase 2: Planning
20 plan = self.create_implementation_plan(

issue_description , context)
21

22 # Phase 3: Implementation with testing loop
23 for step in plan["steps"]:
24 self.execute_step(step)
25

26 # Run tests after each step
27 test_results = self.tools["run_tests"]()
28 if not test_results.all_passed:
29 self.debug_and_fix(test_results.failures)
30

31 # Phase 4: Code quality
32 self.tools["run_linter"]()
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33

34 # Phase 5: Final verification and commit
35 if self.final_verification ():
36 self.tools["git_commit"](f"Fix:␣{

issue_description}")
37 return "Success"
38 else:
39 return "Failed␣verification"
40

41 def gather_context(self , issue):
42 relevant_files = self.tools["search_codebase"](
43 extract_keywords(issue)
44 )
45

46 context = {
47 "file_structure": self.tools["get_file_structure

"](),
48 "relevant_files": {
49 file: self.tools["read_file"](file)
50 for file in relevant_files [:5] # Limit

context
51 },
52 "test_files": self.repo.find_test_files ()
53 }
54 return context
55

56 def debug_and_fix(self , failures):
57 for failure in failures:
58 error_analysis = self.llm.generate(f"""
59 ␣␣␣␣␣␣␣␣␣␣␣␣Test␣failure:␣{failure.test_name}
60 ␣␣␣␣␣␣␣␣␣␣␣␣Error:␣{failure.error_message}
61 ␣␣␣␣␣␣␣␣␣␣␣␣Stack␣trace:␣{failure.stack_trace}
62

63 ␣␣␣␣␣␣␣␣␣␣␣␣Analyze␣the␣root␣cause␣and␣suggest␣a␣fix.
64 ␣␣␣␣␣␣␣␣␣␣␣␣""")
65

66 fix_action = self.llm.generate(f"""
67 ␣␣␣␣␣␣␣␣␣␣␣␣Root␣cause:␣{error_analysis}
68

69 ␣␣␣␣␣␣␣␣␣␣␣␣Generate␣the␣exact␣code␣change␣needed␣to␣fix␣
this.

70 ␣␣␣␣␣␣␣␣␣␣␣␣Format:␣file_path ,␣old_code ,␣new_code
71 ␣␣␣␣␣␣␣␣␣␣␣␣""")
72

73 self.apply_fix(fix_action)
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2.4.2 Enterprise Automation
Complex Workflow Example: Employee Onboarding

1 class OnboardingAgent:
2 def __init__(self , llm , integrations):
3 self.llm = llm
4 self.integrations = integrations # Dict of API

clients
5

6 def onboard_employee(self , employee_data):
7 workflow = self.create_workflow(employee_data)
8

9 for task in workflow:
10 try:
11 self.execute_task(task)
12 self.log_success(task)
13 except Exception as e:
14 self.handle_error(task , e)
15 if not self.can_recover(task , e):
16 self.escalate_to_human(task , e)
17 break
18

19 return self.generate_report ()
20

21 def create_workflow(self , employee_data):
22 return [
23 {"type": "create_account", "system": "Active␣

Directory"},
24 {"type": "create_email", "system": "Google␣

Workspace"},
25 {"type": "assign_hardware", "system": "IT␣

Inventory"},
26 {"type": "enroll_benefits", "system": "HR␣Portal

"},
27 {"type": "schedule_orientation", "system": "

Calendar"},
28 {"type": "create_credentials", "system": "

Security"},
29 ]
30

31 def execute_task(self , task):
32 system = self.integrations[task["system"]]
33

34 # Use LLM to generate appropriate API call
35 api_call = self.llm.generate(f"""
36 ␣␣␣␣␣␣␣␣Generate␣Python␣code␣to␣execute␣this␣task:
37 ␣␣␣␣␣␣␣␣{task}
38

39 ␣␣␣␣␣␣␣␣Available␣API␣methods␣for␣{task["system"]}:
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40 ␣␣␣␣␣␣␣␣{system.get_api_documentation ()}
41

42 ␣␣␣␣␣␣␣␣Return␣executable␣Python␣code.
43 ␣␣␣␣␣␣␣␣""")
44

45 # Execute in sandboxed environment
46 result = self.safe_execute(api_call , system)
47 return result

2.5 Markov Decision Processes (MDPs)
Despite the success of LLM-based agents, the mathematical foundation re-
mains crucial for understanding and optimizing agent behavior.

2.5.1 Formal Definition
An MDP is defined by the tuple (S,A, P,R, γ):

• S: State space (finite or infinite)

• A: Action space (may depend on state: A(s))

• P (s′|s, a): Transition probability distribution

• R(s, a, s′): Reward function R : S ×A× S → R

• γ ∈ [0, 1): Discount factor for future rewards

Policy: π : S → P (A) maps states to probability distributions over ac-
tions.

Markov Property:

P (st+1|st, at, st−1, . . . , s0) = P (st+1|st, at)

2.5.2 Value Functions
State Value Function

Expected return from state s under policy π:

V π(s) = Eπ

[ ∞∑
t=0

γtRt+1 | S0 = s

]
= Eπ[Gt|St = s]

where Gt =
∑∞

k=0 γ
kRt+k+1 is the return.
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Action Value Function

Expected return from taking action a in state s then following π:

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtRt+1 | S0 = s,A0 = a

]

Advantage Function

Measures how much better action a is compared to the average:

Aπ(s, a) = Qπ(s, a)− V π(s)

2.5.3 Bellman Equations
Bellman Expectation Equation

V π(s) =
∑
a

π(a|s)
∑
s′

P (s′|s, a)[R(s, a, s′) + γV π(s′)]

Qπ(s, a) =
∑
s′

P (s′|s, a)[R(s, a, s′) + γ
∑
a′

π(a′|s′)Qπ(s′, a′)]

Bellman Optimality Equation

The optimal value function satisfies:

V ∗(s) = max
a

∑
s′

P (s′|s, a)[R(s, a, s′) + γV ∗(s′)]

Q∗(s, a) =
∑
s′

P (s′|s, a)[R(s, a, s′) + γmax
a′

Q∗(s′, a′)]

The optimal policy is:

π∗(s) = argmax
a

Q∗(s, a)

2.5.4 Solution Methods
Value Iteration

Iteratively apply the Bellman optimality operator:
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Algorithm 1 Value Iteration
1: Initialize V0(s) arbitrarily for all s ∈ S
2: for k = 0, 1, 2, . . . until convergence do
3: for each s ∈ S do
4: Vk+1(s)← maxa

∑
s′ P (s

′|s, a)[R(s, a, s′) + γVk(s
′)]

5: end for
6: end for
7: Extract policy: π(s) = argmaxa

∑
s′ P (s

′|s, a)[R(s, a, s′) + γV (s′)]

Convergence: Guaranteed for γ < 1. Converges at rate O(γk).

Policy Iteration
Alternates between policy evaluation and improvement:

Algorithm 2 Policy Iteration
1: Initialize π0 arbitrarily
2: for k = 0, 1, 2, . . . until πk = πk+1 do
3: Policy Evaluation: Solve for V πk :
4: V πk(s) =

∑
s′ P (s

′|s, πk(s))[R(s, πk(s), s′) + γV πk(s′)]
5: Policy Improvement:
6: πk+1(s) = argmaxa

∑
s′ P (s

′|s, a)[R(s, a, s′) + γV πk(s′)]
7: end for

2.5.5 Partially Observable MDPs (POMDPs)
When the agent cannot fully observe the state, we model with a POMDP:
(S,A, P,R, γ,Ω, O) where:

• Ω: Observation space
• O(o|s′, a): Observation probability
The agent maintains a belief state b(s) = P (s|ht) over states given his-

tory.
Belief Update:

b′(s′) = η ·O(o|s′, a)
∑
s

P (s′|s, a)b(s)

where η is a normalization constant.

2.6 Challenges and Future Directions
2.6.1 Current Limitations

• Reliability:
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– Agents can enter infinite loops or degenerate behaviors
– Hallucination of tool outputs or environment states
– Success rates on SWE-bench: 30-40% (as of 2024)
– Difficulty with long-horizon tasks (>50 steps)

• Cost:

– Autonomous loops: 100K-1M tokens per task
– At $15/1M tokens (GPT-4): $1.50-$15 per task
– Inefficient exploration strategies

• Safety:

– Unintended tool usage (e.g., unauthorized API calls)
– Data leakage through tool outputs
– Adversarial prompt injection via environment
– Difficulty in specifying and verifying safety constraints

• Evaluation:

– Lack of standardized benchmarks
– Difficulty measuring "partial progress"
– Stochasticity in LLM outputs makes reproducibility hard

2.6.2 Open Research Problems
1. Credit Assignment: When a long trajectory fails, which action was

responsible?

2. Hierarchical Decomposition: How to automatically learn useful
subgoals?

3. Transfer Learning: Can agents generalize skills across different en-
vironments?

4. Sample Efficiency: Current agents require many attempts. How to
learn from fewer examples?

5. Interpretability: Can we understand why an agent made a decision?

6. Human-Agent Collaboration: Optimal ways to combine human judg-
ment with agent automation.
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2.6.3 Emerging Directions
• Neurosymbolic Approaches: Combining LLMs with symbolic plan-

ners (PDDL, Answer Set Programming)

• Learned World Models: Agents that build predictive models of en-
vironment dynamics

• Meta-Learning for Agents: Learning to learn new tasks quickly

• Multi-Modal Agents: Combining vision, language, and action

• Constitutional AI for Agents: Building in ethical constraints

2.7 Problems and Solutions
Warm-up Problems
Exercise 2.1. PEAS Framework: Define the PEAS for an autonomous
trading agent operating in a stock market.

Solution:

• Performance: Portfolio return, Sharpe ratio, maximum drawdown,
win rate, risk-adjusted returns

• Environment: Stock market (NYSE, NASDAQ), financial data APIs,
news feeds, order book. Properties: Partially observable (hidden or-
ders), Stochastic, Sequential, Dynamic, Continuous

• Actuators: Place buy/sell orders, set limit orders, cancel orders, re-
balance portfolio

• Sensors: Read stock prices, volume data, technical indicators, news
sentiment, economic reports, order book depth

■

Exercise 2.2. Discounting:
[label=(b)]

1. Why do we use a discount factor γ < 1 in infinite horizon MDPs?

2. What is the effective time horizon of a policy with γ = 0.9?
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Solution:
[label=(g)]

1. Mathematical: Ensures the infinite sum
∑∞

t=0 γ
tRt converges (geo-

metric series).
∞∑
t=0

γtRmax =
Rmax

1− γ
<∞

Economic: Reflects time preference and uncertainty. A reward re-
ceived now is more valuable than the same reward in the future due
to:

• Uncertainty about future outcomes
• Opportunity cost of waiting
• In financial contexts, inflation

2. The effective horizon is approximately 1
1−γ . For γ = 0.9, this is 1

0.1 = 10

time steps. More precisely, after t steps, the total discounted weight
is:

t−1∑
k=0

γk =
1− γt

1− γ

For γ = 0.9 and t = 10: 1−0.910

0.1 ≈ 6.5 (65% of total infinite value).

■

Standard Problems
Exercise 2.3. ReAct Trace: Write a hypothetical ReAct trace for an agent
asked: "What was the GDP of the United States in the year the iPhone was
first released, and how does it compare to today?"

Solution:

1 Thought: I need to find two pieces of information: (1) when
the iPhone was

2 first released , and (2) the US GDP for that year and for
today.

3

4 Action: search (" iPhone first release date")
5

6 Observation: The first iPhone was released on June 29, 2007.
7

8 Thought: Now I know the iPhone was released in 2007. I need
to find the US
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9 GDP for 2007.
10

11 Action: search (" United States GDP 2007")
12

13 Observation: The US GDP in 2007 was approximately $14.48
trillion.

14

15 Thought: Now I need current US GDP data. Let me search for
the most recent

16 data.
17

18 Action: search (" United States GDP 2024")
19

20 Observation: The US GDP in 2024 is approximately $27 .97
trillion

21 (as of Q3 2024).
22

23 Thought: Now I can compare these values. The GDP has nearly
doubled from

24 2007 to 2024.
25

26 Action: calculate ("(27.97 - 14.48) / 14.48 * 100")
27

28 Observation: 93.2%
29

30 Thought: I have all the information needed to answer the
question.

31

32 Action: finish ("The iPhone was first released in 2007, when
the US GDP was

33 approximately $14 .48 trillion. Today (2024) , the US GDP is
approximately

34 $27 .97 trillion , representing an increase of 93.2%, or
nearly a doubling

35 of the economy over this 17-year period .")

■

Exercise 2.4. Value Iteration: Consider a 2-state MDP with statesA and
B.

• Actions: Stay, Move

• Transitions: Deterministic (Move switches states, Stay keeps current
state)

• Rewards: R(A, ·, ·) = 1, R(B, ·, ·) = 0

• Discount: γ = 0.5
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Calculate V ∗(A) and V ∗(B) using the Bellman optimality equation.

Solution: For state A, we have two choices:

• Stay: Vstay(A) = 1 + γV ∗(A)

• Move: Vmove(A) = 1 + γV ∗(B)

For state B:

• Stay: Vstay(B) = 0 + γV ∗(B)

• Move: Vmove(B) = 0 + γV ∗(A)

Since rewards inA are always 1 and inB are always 0, the optimal policy
is:

• From A: Stay (keep getting rewards of 1)

• From B: Move to A (get to the rewarding state)

For state A with optimal action Stay:

V ∗(A) = 1 + γV ∗(A)

V ∗(A)(1− γ) = 1

V ∗(A) =
1

1− γ
=

1

1− 0.5
= 2

For state B with optimal action Move:

V ∗(B) = 0 + γV ∗(A) = 0.5× 2 = 1

Verification:

• V ∗(A) = max{1 + 0.5(2), 1 + 0.5(1)} = max{2, 1.5} = 2

• V ∗(B) = max{0 + 0.5(1), 0 + 0.5(2)} = max{0.5, 1} = 1

Optimal Policy: π∗(A) = Stay, π∗(B) = Move ■

Advanced Problems
Exercise 2.5. POMDP Belief Update: Consider a robot in a 1D hallway
with 3 positions: {L,M,R}. The robot has noisy sensors:

• At L: observes "left" with probability 0.7, "middle" with probability 0.3

• At M : observes "middle" with probability 0.8, "left" and "right" each
with probability 0.1
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• At R: observes "right" with probability 0.7, "middle" with probability
0.3

The robot starts with uniform belief b0 = [1/3, 1/3, 1/3] and takes action
MoveRight (deterministically moves one position right, wraps around). It
then observes "middle". What is the updated belief b1?

Solution: Step 1: Prediction (apply action model)
After MoveRight:
• L→M

• M → R

• R→ L (wrap around)
Predicted belief b̄1:

b̄1 = [P (L), P (M), P (R)] = [1/3, 1/3, 1/3]

(After action: L gets probability from R, M from L, R from M )

b̄1 = [1/3, 1/3, 1/3]

Step 2: Update (incorporate observation "middle")
Observation probabilities:
• O(middle|L) = 0.3

• O(middle|M) = 0.8

• O(middle|R) = 0.3

Unnormalized belief:

b′1(L) = O(middle|L) · b̄1(L) = 0.3× 1/3 = 0.1

b′1(M) = O(middle|M) · b̄1(M) = 0.8× 1/3 ≈ 0.267

b′1(R) = O(middle|R) · b̄1(R) = 0.3× 1/3 = 0.1

Normalization constant:

η =
1

0.1 + 0.267 + 0.1
=

1

0.467
≈ 2.14

Final belief:

b1(L) = 2.14× 0.1 ≈ 0.214

b1(M) = 2.14× 0.267 ≈ 0.571

b1(R) = 2.14× 0.1 ≈ 0.214

Interpretation: After observing "middle", the robot is most confident
it’s in position M (57.1%), but maintains some uncertainty about being at
the boundaries. ■
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Exercise 2.6. Policy Gradient: Consider an agent learning a parameter-
ized policy πθ(a|s). The policy gradient theorem states:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st) ·Gt

]

where Gt is the return from time t.
[label=(f)]

1. Explain intuitively why we multiply by the return Gt.

2. What problem arises with high variance in Gt, and how does the ad-
vantage function A(s, a) = Q(s, a)− V (s) address it?

Solution:
[label=(g)]

1. Intuition for multiplying by Gt:
The term∇θ log πθ(at|st) tells us the direction in parameter space that
increases the probability of taking action at in state st.
Multiplying by Gt scales this update based on how good the outcome
was:

• If Gt > 0 (good outcome): increase πθ(at|st) (make this action
more likely)

• If Gt < 0 (bad outcome): decrease πθ(at|st) (make this action less
likely)

• Magnitude of Gt determines strength of update

This is the essence of REINFORCE: reinforce actions that led to good
outcomes.

2. High variance problem and advantage function:
Problem with raw returns Gt:

• Returns can vary wildly even for the same action due to stochas-
ticity

• Example: In a game, winning might give Gt = +100, losing gives
Gt = −100. But if the baseline reward is +50, both outcomes
should be interpreted relative to this baseline.

• High variance⇒ slow learning, unstable updates
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Advantage function solution:

A(st, at) = Q(st, at)− V (st)

The advantage measures how much better action at is compared to the
average action in state st:

• A > 0: Action is better than average⇒ increase probability
• A < 0: Action is worse than average⇒ decrease probability
• A ≈ 0: Action is about average⇒ small update

Variance reduction:

Var[A(s, a)] ≤ Var[Gt]

By subtracting the baseline V (st), we remove variance that’s due to
the state itself rather than the action choice. This is mathematically
valid because:

E[∇θ log πθ(at|st) · V (st)] = 0

(The baseline doesn’t change the expected gradient, but reduces vari-
ance.)
Example: In state s, average return is 50. Action a1 gives returns in
[45, 55], action a2 gives returns in [60, 70].

• Using Gt: Hard to distinguish (variance = 625 for both)
• UsingA(s, a): A(s, a1) ∈ [−5,+5],A(s, a2) ∈ [+10,+20] (clear pref-

erence for a2)

■

Exercise 2.7. ReAct Error Recovery: Design a ReAct trace for the fol-
lowing scenario: An agent is asked to "Book a flight from Boston to Paris on
December 25th." The flight search API returns no results (flights are sold
out). Show how the agent should adapt and find an alternative solution.

Solution:
1 Task: Book a flight from Boston to Paris on December 25th.
2

3 Thought: I need to search for flights from Boston (BOS) to
Paris (CDG/ORY)

4 on December 25th.
5

6 Action: search_flights(origin ="BOS", destination ="CDG", date
="2024 -12 -25")
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7

8 Observation: No flights available. All flights are fully
booked.

9

10 Thought: The direct flight is sold out. I have several
options:

11 1. Try nearby dates
12 2. Try alternative airports
13 3. Try connecting flights
14 Let me start by checking nearby dates.
15

16 Action: search_flights(origin ="BOS", destination ="CDG", date
="2024 -12 -24")

17

18 Observation: 2 flights available: AF334 ($1 ,200), BA712 ($1
,350)

19

20 Thought: There are flights available on December 24th.
However , the user

21 specified December 25th. Let me check December 26th as well
to provide

22 options.
23

24 Action: search_flights(origin ="BOS", destination ="CDG", date
="2024 -12 -26")

25

26 Observation: 5 flights available , starting from $950.
27

28 Thought: I also should check alternative Paris airports and
nearby

29 departure cities.
30

31 Action: search_flights(origin ="BOS", destination ="ORY", date
="2024 -12 -25")

32

33 Observation: No flights available.
34

35 Action: search_flights(origin ="JFK", destination ="CDG", date
="2024 -12 -25")

36

37 Observation: 3 flights available: AF008 ($1 ,500), DL264 ($1
,450),

38 UA57 ($1 ,600)
39

40 Thought: I found alternatives. I should now check multi -city
options

41 (BOS to another US city , then to Paris).
42

43 Action: search_flights(origin ="BOS", destination ="JFK", date
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="2024 -12 -25")
44

45 Observation: Multiple flights available throughout the day ,
$200 -$350.

46

47 Thought: I now have enough information to present
alternatives to the user.

48 The options are:
49 1. Fly December 24th (arrive early) - Available
50 2. Fly December 26th (arrive late) - Available , cheaper
51 3. Fly from JFK on December 25th (requires BOS -JFK

connection)
52

53 Action: finish (" Unfortunately , direct flights from Boston to
Paris on

54 December 25th are sold out. Here are your best alternatives:
55

56 Option 1: Depart December 24th
57 - AF334: Boston to Paris , $1 ,200
58 - Arrives one day early
59

60 Option 2: Depart December 26th
61 - Multiple options from $950
62 - Arrives one day late
63

64 Option 3: Connect through JFK on December 25th
65 - Boston to JFK: $200 -$350
66 - JFK to Paris: AF008 at $1 ,500
67 - Total: ~$1 ,700-$1 ,850
68 - Achieves December 25th travel date
69

70 Would you like me to book one of these options , or search
for additional

71 alternatives ?")

Key aspects of this trace:
1. Error detection: Agent recognizes the initial search failed

2. Alternative strategy: Explores multiple dimensions (dates, airports,
connections)

3. Systematic exploration: Checks nearby dates and alternative routes

4. User-centric: Presents options rather than making unilateral deci-
sions

5. Clear communication: Explains trade-offs of each option

■
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2.8 Conclusion
Intelligent agents represent the frontier of AI research and application. The
combination of classical AI formalisms (MDPs, search, planning) with mod-
ern LLM capabilities has created a new paradigm where systems can au-
tonomously pursue complex goals in open-ended environments.

Key takeaways:

1. Agents exist on a spectrum from simple reflex systems to fully au-
tonomous decision-makers

2. The ReAct pattern (Reason + Act) enables robust, recoverable agent
behavior

3. Multi-agent systems can solve problems beyond the capability of single
agents

4. Mathematical frameworks (MDPs, POMDPs) provide theoretical ground-
ing

5. Significant challenges remain in reliability, cost, safety, and evalua-
tion

As LLMs continue to improve and agent frameworks mature, we expect
to see increasingly capable autonomous systems deployed across domains
from software engineering to scientific research to enterprise automation.



Chapter 3

Problem Solving and
Search

3.1 Introduction to Search Problems
Problem solving is one of the most fundamental aspects of intelligence.
When we plan a route on a map, solve a Sudoku puzzle, prove a mathemat-
ical theorem, or navigate a robot through a warehouse, we are engaging in
search. At its core, search is the process of exploring a state space to find
a sequence of actions that transforms an initial state into a desired goal
state.

3.1.1 Historical Context
The study of search algorithms dates back to the earliest days of AI:

• 1950s: Graph traversal algorithms (BFS, DFS) formalized

• 1968: Dijkstra’s algorithm for shortest paths

• 1968: A* algorithm developed by Hart, Nilsson, and Raphael

• 1980s: IDA* and other memory-efficient variants

• 1990s-2000s: Heuristic search in planning (HSP, FF)

• 2010s-Present: Neural approaches to search (AlphaGo, MuZero)

3.1.2 Formalizing the Search Problem
A search problem is defined by a tuple (S, s0, A,Result,Goal,Cost):

51
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1. State Space (S): The set of all possible states the environment can
be in. Can be discrete or continuous, finite or infinite.

2. Initial State (s0 ∈ S): The state where the agent begins its search.

3. Actions (A(s) ⊆ A): A function that returns the set of applicable
actions in state s. The action space A may be state-dependent.

4. Transition Model (Result : S × A → S): A deterministic function
that returns the state resulting from executing action a in state s.
Sometimes denoted as the successor function.

5. Goal Test (Goal : S → {0, 1}): A boolean function that determines
whether state s satisfies the goal criteria. Can also be specified as a
set of goal states Sg ⊆ S.

6. Path Cost Function (c : Path → R+): Assigns a numeric cost to
paths. Often decomposed as:

c(⟨s0, a1, s1, . . . , an, sn⟩) =
n∑

i=1

Cost(si−1, ai, si)

Solution: A sequence of actions [a1, a2, . . . , an] that transforms s0 into a
goal state.

Optimal Solution: A solution with minimum path cost among all so-
lutions.

3.1.3 State Space Representations
Explicit State Spaces

States are explicitly enumerated. Example: 8-puzzle has 9! = 362, 880 pos-
sible states.

Implicit State Spaces

States are generated on-demand through the transition model. Example:
Chess has approximately 1047 states, too many to store explicitly.

Factored Representations

States are represented as assignments to variables. Example: In a plan-
ning problem, state might be {At(Robot, A),HasKey = True}.
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3.1.4 Graph Search vs. Tree Search
Tree Search: Treats each path as distinct, potentially visiting the same
state multiple times through different paths. Can have infinite branches in
graphs with cycles.

Graph Search: Maintains a closed set of explored states, visiting each
state at most once. More memory-intensive but avoids redundant explo-
ration.

3.2 Search Algorithm Properties
Before diving into specific algorithms, we establish criteria for evaluation:

• Completeness: Is the algorithm guaranteed to find a solution if one
exists?

• Optimality: Does it find the optimal (lowest-cost) solution?

• Time Complexity: How many nodes does it expand/generate?

• Space Complexity: How much memory does it require?

Notation for Complexity Analysis:

• b: Branching factor (maximum number of successors)

• d: Depth of the shallowest goal node

• m: Maximum depth of the search tree

• C∗: Cost of the optimal solution

• ϵ: Minimum step cost (for some algorithms)

3.3 Uninformed (Blind) Search Algorithms
Uninformed search strategies have no additional information about states
beyond the problem definition. They don’t know whether a non-goal state
is "closer" to the goal than another.

3.3.1 Breadth-First Search (BFS)
Algorithm Description

BFS expands the shallowest unexpanded node in the search tree. It uses a
FIFO (First-In, First-Out) queue to manage the frontier.



54 CHAPTER 3. PROBLEM SOLVING AND SEARCH

Algorithm 3 Breadth-First Search
1: Input: Problem with initial state s0
2: Output: Solution path or failure
3: Initialize frontier as FIFO queue containing s0
4: Initialize explored set as empty
5: while frontier is not empty do
6: node← frontier.pop()
7: if Goal(node.state) then
8: return solution(node)
9: end if

10: Add node.state to explored
11: for each action in Actions(node.state) do
12: child← ChildNode(node, action)
13: if child.state not in explored and not in frontier then
14: frontier.push(child)
15: end if
16: end for
17: end while
18: return failure

Properties

• Completeness: Yes (if b is finite)

• Optimality: Yes, if all step costs are identical (unit cost)

• Time Complexity: O(bd), must explore all nodes at depth d

• Space Complexity: O(bd), must store all nodes at depth d in frontier

Space complexity is the major limitation of BFS. For b = 10 and
d = 8: 108 = 100 million nodes.

3.3.2 Uniform Cost Search (UCS)
Algorithm Description

When step costs vary, BFS is not optimal. UCS expands the node n with
the lowest path cost g(n), where:

g(n) = cost from initial state to node n

It uses a priority queue ordered by g(n).
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Algorithm 4 Uniform Cost Search
1: Initialize frontier as priority queue with s0 (priority = 0)
2: Initialize explored set as empty
3: while frontier is not empty do
4: node← frontier.pop() ▷ Lowest g value
5: if Goal(node.state) then
6: return solution(node)
7: end if
8: Add node.state to explored
9: for each action in Actions(node.state) do

10: child← ChildNode(node, action)
11: if child.state not in explored and not in frontier then
12: frontier.push(child, priority = child.g)
13: else if child.state in frontier with higher cost then
14: Replace frontier node with child
15: end if
16: end for
17: end while

Properties

• Completeness: Yes, if step costs ≥ ϵ > 0

• Optimality: Yes, always expands cheapest unexpanded node

• Time Complexity: O(b1+⌊C∗/ϵ⌋)

• Space Complexity: O(b1+⌊C∗/ϵ⌋)

Key Insight: UCS explores states in order of increasing path cost, guar-
anteeing optimality.

3.3.3 Depth-First Search (DFS)

Algorithm Description

DFS explores as deeply as possible along each branch before backtracking.
It uses a LIFO stack (or recursion) for the frontier.
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Algorithm 5 Depth-First Search (Recursive)
1: function DFS(node)
2: if Goal(node.state) then
3: return solution(node)
4: end if
5: for each action in Actions(node.state) do
6: child← ChildNode(node, action)
7: result← DFS(child)
8: if result ̸= failure then
9: return result

10: end if
11: end for
12: return failure
13: end function

Properties
• Completeness: No (can get stuck in infinite branches; yes in finite

spaces)

• Optimality: No (returns first solution found, not necessarily optimal)

• Time Complexity: O(bm), may explore entire tree to depth m

• Space Complexity: O(bm), only stores nodes along current path

Advantage: Low memory requirements make DFS suitable for memory-
constrained environments.

3.3.4 Depth-Limited Search (DLS)
DFS with a predetermined depth limit l. Useful when maximum solution
depth is known.

Properties:
• Incomplete if l < d

• Time: O(bl)

• Space: O(bl)

3.3.5 Iterative Deepening Search (IDS)
Algorithm Description
IDS combines BFS’s optimality and completeness with DFS’s space effi-
ciency. It repeatedly performs DLS with increasing depth limits: l = 0, 1, 2, . . .
until a solution is found.
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Algorithm 6 Iterative Deepening Search
1: for depth = 0 to∞ do
2: result← DepthLimitedSearch(depth)
3: if result ̸= cutoff then
4: return result
5: end if
6: end for

Properties
• Completeness: Yes

• Optimality: Yes (for unit costs)

• Time Complexity: O(bd)

• Space Complexity: O(bd), combines BFS optimality with DFS space
efficiency!

Overhead Analysis
Despite revisiting states, IDS is asymptotically optimal. Nodes at depth d
are generated once, nodes at depth d− 1 twice, etc.

Total nodes generated:

N = (d)b+ (d− 1)b2 + (d− 2)b3 + · · ·+ (1)bd = O(bd)

For b = 10, d = 5:

• BFS: 1 + 10 + 100 + 1000 + 10000 + 100000 = 111, 111 nodes

• IDS: 6 + 50 + 400 + 3000 + 20000 + 100000 = 123, 456 nodes (only 11%
overhead)

3.3.6 Bidirectional Search
Concept
Search simultaneously from both the initial state forward and the goal state
backward. Stop when the two searches meet.

Time Complexity: O(bd/2), significant improvement over O(bd)
Challenges:

• Requires ability to generate predecessors (not always possible)

• Must handle multiple goal states

• Coordination between forward/backward searches
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3.4 Informed (Heuristic) Search
Informed search uses domain-specific knowledge encoded in a heuristic
function:

h(n) = estimated cost from node n to nearest goal

3.4.1 Greedy Best-First Search
Algorithm

Expands the node that appears closest to the goal according to h(n). Uses
priority queue ordered by h(n).

Properties

• Completeness: No (can get stuck in loops)

• Optimality: No (greedy choices can miss optimal path)

• Time: O(bm) in worst case, but good heuristics can dramatically im-
prove

• Space: O(bm), keeps all nodes in memory

Advantage: Can be very fast with good heuristics.
Disadvantage: No optimality guarantee.

3.4.2 A* Search
Algorithm Description

A* is the most widely used informed search algorithm. It evaluates nodes
using:

f(n) = g(n) + h(n)

where:

• g(n) = cost from start to node n (known, exact)

• h(n) = estimated cost from n to goal (heuristic)

• f(n) = estimated total cost of path through n

A* expands the node with the lowest f(n) value.
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Algorithm 7 A* Search
1: Initialize frontier as priority queue with s0 (f(s0) = h(s0))
2: Initialize explored set as empty
3: while frontier is not empty do
4: node← frontier.pop() ▷ Lowest f value
5: if Goal(node.state) then
6: return solution(node)
7: end if
8: Add node.state to explored
9: for each action in Actions(node.state) do

10: child← ChildNode(node, action)
11: child.g← node.g + Cost(node.state, action, child.state)
12: child.f← child.g + h(child.state)
13: if child.state not in explored and not in frontier then
14: frontier.push(child, priority = child.f)
15: else if child.state in frontier with higher f then
16: Replace frontier node with child
17: end if
18: end for
19: end while
20: return failure

Admissibility

Definition 3.1 (Admissible Heuristic). A heuristic h(n) is admissible if it
never overestimates the true cost to reach a goal:

∀n : h(n) ≤ h∗(n)

where h∗(n) is the true optimal cost from n to the nearest goal.

Examples:

• 8-puzzle: Number of misplaced tiles is admissible (moving each tile
to correct position takes at least 1 move)

• Route finding: Straight-line (Euclidean) distance is admissible (ac-
tual paths cannot be shorter than straight line)

• Not admissible: Twice the straight-line distance (overestimates)

Optimality of A*

Theorem 3.1 (A* Optimality). If the heuristic h(n) is admissible, then A*
graph search is optimal.
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Proof. Suppose A* returns a suboptimal goal G2 with path cost g(G2) > C∗,
where C∗ is the optimal solution cost.

Let G be an optimal goal with path cost g(G) = C∗, and let n be an
unexpanded node on the optimal path to G.

Since h is admissible:

h(n) ≤ h∗(n) (by admissibility) (3.1)
f(n) = g(n) + h(n) ≤ g(n) + h∗(n) (3.2)

= g(n) + (true cost from n to G) (3.3)
= g(G) = C∗ (3.4)

For the suboptimal goal G2:

f(G2) = g(G2) + h(G2) (3.5)
= g(G2) + 0 (goal state, h(G2) = 0) (3.6)
> C∗ (3.7)

Therefore: f(n) ≤ C∗ < f(G2)
Since A* always expands the node with the minimum f -value and f(n) <

f(G2), A* would expand n before selecting G2. Continuing this reasoning,
A* would eventually expand all nodes on the optimal path and find the op-
timal goal G before selecting the suboptimal G2.

This contradicts our assumption that A* returned G2. Therefore, A*
with an admissible heuristic always returns an optimal solution.

Consistency (Monotonicity)

Definition 3.2 (Consistent Heuristic). A heuristic h(n) is consistent (or
monotonic) if for every node n and successor n′ generated by action a:

h(n) ≤ c(n, a, n′) + h(n′)

This is the triangle inequality for heuristics.

Relationship to Admissibility:

• Consistency⇒ Admissibility

• Admissibility ̸⇒ Consistency

• For tree search, admissibility suffices

• For graph search, consistency ensures optimality more efficiently

Lemma 3.2. If h(n) is consistent, then f(n) is non-decreasing along any
path.
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Proof. Let n′ be a successor of n via action a. Then:

f(n′) = g(n′) + h(n′) (3.8)
= g(n) + c(n, a, n′) + h(n′) (3.9)
≥ g(n) + h(n) (by consistency) (3.10)
= f(n) (3.11)

Therefore, f(n′) ≥ f(n).

Properties of A*
• Completeness: Yes (with consistent heuristic and finite branching)

• Optimality: Yes (with admissible heuristic)

• Time Complexity: O(bd) in worst case; depends critically on heuris-
tic quality

• Space Complexity: O(bd), must keep all generated nodes in memory

Space is the main practical limitation of A*.

Effective Branching Factor
The effective branching factor b∗ measures heuristic quality. If A* gen-
erates N nodes to find a solution at depth d:

N = 1 + b∗ + (b∗)2 + · · ·+ (b∗)d

Lower b∗ indicates better heuristic. Ideal: b∗ = 1 (straight to goal).

3.4.3 Designing Admissible Heuristics
Relaxed Problems
Remove constraints from the original problem to create an easier problem
whose solution cost gives an admissible heuristic.

Example: 8-Puzzle
• Original: Slide tiles into adjacent empty space

• Relaxation 1: Tiles can move to any adjacent square⇒ h1 = misplaced
tiles

• Relaxation 2: Tiles can move to any square ⇒ h2 = Manhattan dis-
tance

Since Relaxation 2 has fewer constraints: h2(n) ≥ h1(n) for all n.
Dominance: If h2(n) ≥ h1(n) for all n and both are admissible, then h2

dominates h1. A* with h2 will never expand more nodes than with h1.
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Pattern Databases

Precompute exact solution costs for subproblems and use as heuristic for
full problem.

Example: 15-Puzzle

• Store optimal costs for moving tiles 1-4 to goal positions (ignoring
other tiles)

• At runtime, lookup cost for current positions of tiles 1-4

• Admissible because ignoring other tiles makes problem easier

Combining Heuristics

Given admissible heuristics h1, h2, . . . , hm:

h(n) = max{h1(n), h2(n), . . . , hm(n)}

is also admissible and dominates each component.

3.4.4 Memory-Bounded Heuristic Search

Iterative Deepening A* (IDA*)

IDA* uses depth-first search with a cutoff based on f(n) values instead of
depth.
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Algorithm 8 IDA*
1: bound← h(s0)
2: loop
3: result, newbound← DFS-Contour(s0, 0, bound)
4: if result ̸= failure then
5: return result
6: end if
7: if newbound =∞ then
8: return failure
9: end if

10: bound← newbound
11: end loop

12: function DFS-Contour(node, g, bound)
13: f ← g + h(node)
14: if f > bound then
15: return failure, f
16: end if
17: if Goal(node) then
18: return solution, −∞
19: end if
20: min←∞
21: for each successor of node do
22: result, newbound← DFS-Contour(successor, g + c, bound)
23: if result ̸= failure then
24: return result, −∞
25: end if
26: min← min(min,newbound)
27: end for
28: return failure, min
29: end function

Properties:
• Space: O(d), linear space like DFS

• Time: Overhead similar to IDS (revisits nodes)

• Optimal with admissible heuristic

• Best for problems where f -values are discrete and increments are
large

Simplified Memory-Bounded A* (SMA*)
SMA* uses all available memory, dropping the worst leaf node when mem-
ory is full and backing up its value to the parent.
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Key Ideas:
• Expands best leaf until memory is full

• When full, drops worst leaf node

• Backs up forgotten node’s value to parent

• Can regenerate paths if needed

Properties:
• Complete if solution fits in memory

• Optimal if optimal solution path fits in memory

• Makes best use of limited memory

3.4.5 Weighted A*
For faster (but suboptimal) search:

f(n) = g(n) +W · h(n) where W > 1

Effect: Weights the heuristic more heavily, focusing on nodes that ap-
pear closer to goal.

Bound: Solution found is within factor W of optimal: cost ≤W · C∗

3.5 Local Search Algorithms
Local search operates in the space of complete state assignments, moving
from state to neighboring states. Suitable for optimization problems where
the path is irrelevant, only the final state matters.

3.5.1 Hill Climbing
Algorithm

Algorithm 9 Hill Climbing (Steepest-Ascent)
1: current← initial state
2: loop
3: neighbor← highest-valued successor of current
4: if Value(neighbor) ≤ Value(current) then
5: return current
6: end if
7: current← neighbor
8: end loop
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Problems
• Local Maxima: Peak that is not global maximum

• Ridges: Sequence of local maxima difficult to navigate

• Plateaus: Flat region where neighbors have same value

Variants
• Stochastic Hill Climbing: Choose randomly among uphill moves

• First-Choice Hill Climbing: Take first uphill move found

• Random Restart: Run hill climbing multiple times with random ini-
tial states

3.5.2 Simulated Annealing
Allows "bad" moves to escape local maxima, with probability that decreases
over time.

Algorithm 10 Simulated Annealing
1: current← initial state
2: for t = 1 to∞ do
3: T ← schedule(t) ▷ Temperature decreases with time
4: if T = 0 then
5: return current
6: end if
7: next← random successor of current
8: ∆E ← Value(next) − Value(current)
9: if ∆E > 0 then

10: current← next
11: else
12: current← next with probability e∆E/T

13: end if
14: end for

Key Insight: High temperature T allows more "bad" moves; as T de-
creases, behavior approaches hill climbing.

Theoretical Result: With appropriate cooling schedule, simulated an-
nealing can find global optimum with probability approaching 1.

3.5.3 Genetic Algorithms
Population-based search inspired by natural evolution.

Components:
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• Population: Set of candidate solutions (individuals)

• Fitness Function: Evaluates quality of each individual

• Selection: Choose individuals for reproduction based on fitness

• Crossover: Combine pairs of individuals to produce offspring

• Mutation: Randomly modify offspring

Algorithm 11 Genetic Algorithm
1: population← random initialization
2: for generation = 1 to max_generations do
3: fitness← evaluate each individual
4: parents← select based on fitness
5: offspring← crossover(parents)
6: offspring← mutate(offspring)
7: population← next generation (offspring + elites)
8: end for
9: return best individual

3.6 Adversarial Search and Games
Game playing involves multiple agents with conflicting goals—typically mod-
eled as zero-sum games.

3.6.1 Game Formulation
A game is defined by:

• S0: Initial state

• To-Move(s): Player whose turn it is in state s

• Actions(s): Legal moves in state s

• Result(s, a): Transition model

• Terminal(s): Boolean indicating if game is over

• Utility(s, p): Payoff for player p in terminal state s

Zero-Sum Assumption: Utility(s, p1) + Utility(s, p2) = 0
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3.6.2 Minimax Algorithm
Minimax Value
The minimax value V (s) of a state is:

• The utility for MAX if both players play optimally from state s onward

Recursive definition:

V (s) =


Utility(s) if Terminal(s)
maxa∈Actions(s) V (Result(s, a)) if To-Move(s) = MAX
mina∈Actions(s) V (Result(s, a)) if To-Move(s) = MIN

Algorithm 12 Minimax Decision
1: function Minimax-Decision(state)
2: return argmaxa Min-Value(Result(state, a))
3: end function

4: function Max-Value(state)
5: if Terminal(state) then
6: return Utility(state)
7: end if
8: v ← −∞
9: for each action in Actions(state) do

10: v ← max(v,Min-Value(Result(state, action)))
11: end for
12: return v
13: end function

14: function Min-Value(state)
15: if Terminal(state) then
16: return Utility(state)
17: end if
18: v ← +∞
19: for each action in Actions(state) do
20: v ← min(v,Max-Value(Result(state, action)))
21: end for
22: return v
23: end function

Properties
• Completeness: Yes (for finite games)

• Optimality: Yes (against optimal opponent)
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• Time Complexity: O(bm) where m is max depth

• Space Complexity: O(bm) with depth-first exploration

3.6.3 Alpha-Beta Pruning

Intuition

If we’ve found a move for MAX that is better than what MIN can force us
into on a different branch, we don’t need to explore that branch further.

Pruning Conditions:

• At MIN node: If β ≤ α, prune remaining children

• At MAX node: If α ≥ β, prune remaining children

Where:

• α = best value for MAX found so far along path to root

• β = best value for MIN found so far along path to root
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Algorithm 13 Alpha-Beta Search
1: function Alpha-Beta-Search(state)
2: return argmaxa Min-Value(Result(state, a), −∞, +∞)
3: end function

4: function Max-Value(state, α, β)
5: if Terminal(state) then
6: return Utility(state)
7: end if
8: v ← −∞
9: for each action in Actions(state) do

10: v ← max(v,Min-Value(Result(state, action), α, β))
11: if v ≥ β then
12: return v ▷ Prune
13: end if
14: α← max(α, v)
15: end for
16: return v
17: end function

18: function Min-Value(state, α, β)
19: if Terminal(state) then
20: return Utility(state)
21: end if
22: v ← +∞
23: for each action in Actions(state) do
24: v ← min(v,Max-Value(Result(state, action), α, β))
25: if v ≤ α then
26: return v ▷ Prune
27: end if
28: β ← min(β, v)
29: end for
30: return v
31: end function

Pruning Effectiveness
Best Case: Perfect move ordering, examine best move first at each level.

• Time complexity: O(bm/2), effectively doubles solvable depth!

• For Chess (b ≈ 35): Instead of searching 4 ply, can search 8 ply in same
time

Worst Case: Worst move ordering, no pruning occurs.
• Time complexity: O(bm), same as minimax
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Average Case: Random ordering gives roughly O(b3m/4)

3.6.4 Imperfect Real-Time Decisions
For complex games (Chess, Go), cannot search to terminal states.

Evaluation Functions

Replace Utility(s) with Eval(s) for non-terminal states:

Eval(s) = w1f1(s) + w2f2(s) + · · ·+ wnfn(s)

Example: Chess Evaluation

• Material: f1(s) = 9(Queens) + 5(Rooks) + 3(Bishops) + 3(Knights) +
1(Pawns)

• Mobility: f2(s) = number of legal moves

• King Safety: f3(s) = pawn shield around king

• Pawn Structure: f4(s) = doubled/isolated pawns (negative)

Cutting Off Search

Use depth limit or iterative deepening with time cutoff.
Quiescence Search: Continue search in "unstable" positions (captures,

checks) to avoid horizon effect.

3.6.5 Monte Carlo Tree Search (MCTS)
Modern game-playing algorithm used in AlphaGo and other systems.

Four Phases

1. Selection: Start at root, use tree policy to select promising node

2. Expansion: Add one or more child nodes

3. Simulation: Run random playout from new node to terminal state

4. Backpropagation: Update statistics along path to root
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UCT (Upper Confidence Bound for Trees)

Selection uses UCB1 formula:

UCT(n) = Q(n)

N(n)
+ C

√
lnN(parent(n))

N(n)

where:

• Q(n) = total reward from node n

• N(n) = number of times node n visited

• C = exploration constant (typically
√
2)

Balance: Exploitation (high Q/N ) vs. Exploration (low N )

3.7 Constraint Satisfaction Problems (CSPs)

3.7.1 Formulation
A CSP consists of:

• Variables: X = {X1, X2, . . . , Xn}

• Domains: D = {D1, D2, . . . , Dn} where Di is the set of possible values
for Xi

• Constraints: C specifying allowable combinations of values

Solution: Complete, consistent assignment (all variables assigned, all
constraints satisfied)

Examples:

• Map Coloring: Color map regions so no adjacent regions have same
color

• Sudoku: 9×9 grid with constraints on rows, columns, boxes

• Scheduling: Assign times to tasks subject to resource and precedence
constraints
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3.7.2 Backtracking Search

Algorithm 14 Backtracking Search for CSPs
1: function Backtracking-Search(csp)
2: return Backtrack({}, csp)
3: end function

4: function Backtrack(assignment, csp)
5: if assignment is complete then
6: return assignment
7: end if
8: var← Select-Unassigned-Variable(csp, assignment)
9: for each value in Order-Domain-Values(var, assignment, csp) do

10: if value is consistent with assignment then
11: Add {var = value} to assignment
12: result← Backtrack(assignment, csp)
13: if result ̸= failure then
14: return result
15: end if
16: Remove {var = value} from assignment
17: end if
18: end for
19: return failure
20: end function

3.7.3 Improving Backtracking Efficiency
Variable Ordering: Minimum Remaining Values (MRV)

Choose variable with fewest legal values remaining.
Intuition: Fail fast, if going to fail, fail early.

Value Ordering: Least Constraining Value

Choose value that rules out fewest values in remaining variables.
Intuition: Keep options open for future choices.

Inference: Forward Checking

After assigning a variable, eliminate inconsistent values from neighbors’
domains.
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Inference: Arc Consistency (AC-3)
Definition 3.3 (Arc Consistency). Variable Xi is arc-consistent with re-
spect to Xj if for every value in Di, there exists a value in Dj satisfying the
constraint between Xi and Xj .

Algorithm 15 AC-3 Algorithm
1: function AC-3(csp)
2: queue← all arcs in csp
3: while queue not empty do
4: (Xi, Xj)← queue.pop()
5: if Revise(csp, Xi, Xj) then
6: if Di is empty then
7: return false
8: end if
9: for each Xk in neighbors of Xi except Xj do

10: queue.add((Xk, Xi))
11: end for
12: end if
13: end while
14: return true
15: end function

16: function Revise(csp, Xi, Xj)
17: revised← false
18: for each x in Di do
19: if no value y in Dj satisfies constraint then
20: Delete x from Di

21: revised← true
22: end if
23: end for
24: return revised
25: end function

Complexity: O(cd3) where c is number of constraints, d is domain size.

3.8 Modern Search Techniques
3.8.1 Neural Heuristics
Use deep neural networks to learn heuristic functions from data.

Example: Train CNN on millions of puzzle configurations to predict
distance to goal.

Advantages:
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• Can capture complex patterns

• No manual engineering required

Challenges:

• Need large training datasets

• No admissibility guarantees

• Inference time

3.8.2 AlphaGo and Beyond
AlphaGo: Combined MCTS with deep neural networks

• Policy network: predicts good moves

• Value network: evaluates positions

• MCTS: guided by neural networks

AlphaZero: Pure reinforcement learning, no human knowledge

• Learns entirely from self-play

• Single neural network for policy and value

• Mastered Chess, Shogi, Go

MuZero: Learns model of environment dynamics

• No knowledge of rules

• Learns latent state representation

• Plans using learned model

3.9 Problems and Solutions
Warm-up Problems
Exercise 3.1. Search Properties: Fill in the table for uninformed search
algorithms:

Algorithm Complete? Optimal? Time Space
BFS ? ? ? ?
DFS ? ? ? ?
IDS ? ? ? ?
UCS ? ? ? ?
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Solution:

Algorithm Complete? Optimal? Time Space
BFS Yes Yes* O(bd) O(bd)
DFS No** No O(bm) O(bm)
IDS Yes Yes* O(bd) O(bd)

UCS Yes*** Yes O(b1+⌊C∗/ϵ⌋) O(b1+⌊C∗/ϵ⌋)

Notes:

• * = for unit step costs

• ** = Yes in finite spaces without cycles

• *** = if step costs ≥ ϵ > 0

■

Exercise 3.2. Admissibility: For the 8-puzzle, which of the following
heuristics are admissible?

[label=(b)]

1. h1(n) = number of misplaced tiles

2. h2(n) = sum of Manhattan distances

3. h3(n) = 2 × sum of Manhattan distances

4. h4(n) = 0

Solution:
[label=(i)]

1. Admissible. Each misplaced tile requires at least 1 move to reach its
goal position, so h1 never overestimates.

2. Admissible. Manhattan distance is the minimum number of moves
needed if tiles could move through each other (relaxed problem). Can-
not be shorter than actual solution.

3. Not admissible. Multiplying by 2 makes it overestimate. For a tile 1
step away, it estimates 2 steps needed.

4. Admissible. The trivial heuristic (always admissible but provides no
guidance). A* with h4 reduces to Uniform Cost Search.

Dominance: h2 dominates h1 (and both dominate h4), so A* with h2 will
expand fewer nodes. ■
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Standard Problems
Exercise 3.3. A* Trace: Consider a grid world with unit costs. Start at
(0,0), Goal at (3,2). Obstacles at (1,1) and (2,1). Actions: Up, Down, Left,
Right (not diagonal). Heuristic: Manhattan Distance h(x, y) = |xg − x| +
|yg − y|.

Trace A* execution showing:

• Nodes expanded (in order)

• For each node: (x, y), g, h, f values

• Final path and cost

Solution: Goal: (3,2), so h(x, y) = |3− x|+ |2− y|
Initial: (0,0)

• g = 0, h = |3− 0|+ |2− 0| = 5, f = 5

Iteration 1: Expand (0,0)

• Generate: (0,1), (1,0)

• (0,1): g = 1, h = 4, f = 5

• (1,0): g = 1, h = 4, f = 5

• Frontier: {(0,1):5, (1,0):5}

Iteration 2: Expand (0,1) [arbitrary tie-break]

• Generate: (0,0) [visited], (0,2), (1,1) [obstacle]

• (0,2): g = 2, h = 3, f = 5

• Frontier: {(1,0):5, (0,2):5}

Iteration 3: Expand (1,0)

• Generate: (0,0) [visited], (2,0), (1,1) [obstacle]

• (2,0): g = 2, h = 3, f = 5

• Frontier: {(0,2):5, (2,0):5}

Iteration 4: Expand (0,2)

• Generate: (0,1) [visited], (1,2)

• (1,2): g = 3, h = 2, f = 5

• Frontier: {(2,0):5, (1,2):5}

Iteration 5: Expand (2,0)
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• Generate: (1,0) [visited], (3,0), (2,1) [obstacle]

• (3,0): g = 3, h = 2, f = 5

• Frontier: {(1,2):5, (3,0):5}

Iteration 6: Expand (1,2)

• Generate: (0,2) [visited], (2,2)

• (2,2): g = 4, h = 1, f = 5

• Frontier: {(3,0):5, (2,2):5}

Iteration 7: Expand (3,0)

• Generate: (2,0) [visited], (3,1)

• (3,1): g = 4, h = 1, f = 5

• Frontier: {(2,2):5, (3,1):5}

Iteration 8: Expand (2,2)

• Generate: (1,2) [visited], (3,2) [GOAL!]

• (3,2): g = 5, h = 0, f = 5

Goal Found!
Solution Path: (0,0) → (0,1) → (0,2) → (1,2) → (2,2) → (3,2)
Path Cost: 5
Key Observations:

• All nodes on frontier maintained f = 5 throughout (characteristic of
consistent heuristic)

• Manhattan distance is consistent for grid world

• Path navigates around obstacles optimally

■

Exercise 3.4. Heuristic Dominance: For the 15-puzzle, consider three
heuristics:

• h1 = number of misplaced tiles

• h2 = sum of Manhattan distances

• h3 = max(h1, h2)
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[label=(d)]

1. Prove that if both h1 and h2 are admissible, then h3 is admissible.

2. Prove that h3 dominates both h1 and h2.

3. Will A* with h3 always expand fewer nodes than A* with h1 or h2?

Solution:
[label=(i)]

1. Proof that h3 is admissible:
Let h∗(n) be the true optimal cost from node n to the goal.
Since h1 is admissible: h1(n) ≤ h∗(n) for all n.
Since h2 is admissible: h2(n) ≤ h∗(n) for all n.
Therefore: h3(n) = max(h1(n), h2(n)) ≤ h∗(n) for all n.
Thus h3 is admissible. □

2. Proof that h3 dominates h1 and h2:
By definition: h3(n) = max(h1(n), h2(n))

Therefore:

h3(n) ≥ h1(n) for all n (3.12)
h3(n) ≥ h2(n) for all n (3.13)

This is the definition of dominance. □

3. Node expansion comparison:
Yes, A* with h3 will never expand more nodes than A* with h1 or h2
(and typically expands fewer).
Reasoning: Since h3(n) ≥ hi(n) for i ∈ {1, 2}:

f3(n) = g(n) + h3(n) ≥ g(n) + hi(n) = fi(n)

Any node expanded by A* with h3 would also have been expanded by
A* with h1 or h2 (since f3 values are at least as high). But some nodes
expanded by h1 or h2 may not be expanded by h3 (those with lower f
values under the weaker heuristics).
Formal Statement: If h2(n) ≥ h1(n) for all n, then every node ex-
panded by A* with h2 would also be expanded by A* with h1, but not
vice versa.

■
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Exercise 3.5. Alpha-Beta Pruning: Consider the following game tree
where MAX moves first:

A (MAX)
/ \

B C (MIN)
/ \ / | \

D E F G H (MAX)
/|\ /|\ /|\ /|\ /|\

Leaves: 3,12,8 | 2,4,6 | 14,5,2 | 7,1,8 | 9,3,6

[label=(e)]

1. Compute minimax values for all nodes (bottom-up).

2. Trace alpha-beta pruning with left-to-right evaluation. Which leaves
are pruned?

3. What is the best move ordering for maximum pruning?

Solution:
[label=(i)]

1. Minimax values:
Leaves (given): 3,12,8,2,4,6,14,5,2,7,1,8,9,3,6
MAX nodes (one level up):

• D = max(3,12,8) = 12
• E = max(2,4,6) = 6
• F = max(14,5,2) = 14
• G = max(7,1,8) = 8
• H = max(9,3,6) = 9

MIN nodes:
• B = min(12,6) = 6
• C = min(14,8,9) = 8

Root (MAX):
• A = max(6,8) = 8

Optimal decision: Choose C (right branch) with value 8.

2. Alpha-Beta trace with left-to-right evaluation:
Initialize: α = −∞, β = +∞ at root
Explore B (MIN):
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• Explore D (MAX): evaluate leaves → D = 12
• B updates: βB = min(+∞, 12) = 12

• Explore E (MAX): evaluate first leaf → 2
• Continue E: 4, 6 → E = 6
• B updates: βB = min(12, 6) = 6

• B returns 6 to root

Root updates: α = max(−∞, 6) = 6

Explore C (MIN):

• Explore F (MAX): evaluate first leaf → 14
• F = 14 (no need to check other leaves if using early return)
• C updates: βC = min(+∞, 14) = 14

• Explore G (MAX): evaluate first leaf → 7
• Since we’re at MAX node in G, continue: 1, 8 → G = 8
• C updates: βC = min(14, 8) = 8

• Check: βC = 8 > α = 6, continue
• Explore H (MAX): evaluate first leaf → 9
• Since 9 alone gives min(8, 9) = 8, and 8 ̸≤ 6, continue
• Actually, C already has value 8, and H can only increase or main-

tain C’s minimum
• But H = 9, so C = min(8, 9) = 8
• Wait, let me reconsider: C = min(14, 8, 9) = 8

Pruned leaves: With left-to-right, standard alpha-beta doesn’t prune
any leaves in this tree because:

• The root’s alpha (6) is never exceeded by beta at C
• Full exploration occurs

However, if we optimize the MAX nodes to stop early when finding a
sufficient value:

• At F: after finding 14, could skip leaves 5,2 (not traditional prun-
ing)

• No traditional alpha-beta pruning occurs with left-to-right here

3. Best move ordering:
For maximum pruning:

• At MAX nodes: Explore best (highest value) children first
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• At MIN nodes: Explore best (lowest value) children first

Optimal ordering for this tree:

• At A: Explore C before B (C has higher value)
• At B: Explore E before D (E has lower value)
• At C: Explore G before F or H (G has lowest value)

With optimal ordering (C first):

(a) Explore C → min(14,8,9) = 8
(b) Root: α = 8

(c) Explore B:
• Explore E: 2,4,6 → E = 6
• B: β = 6

• Since β = 6 ≤ α = 8: Prune D entirely!

Leaves pruned with optimal ordering: All three leaves under D
(3,12,8)
Savings: 3 leaves not evaluated (25% of leaves)

■

Advanced Problems
Exercise 3.6. IDA* vs A*: Consider searching a tree with branching factor
b = 3 and solution at depth d = 4. Assume f -values increase in increments
of 1.

[label=(f)]

1. How many nodes does A* expand?

2. How many node generations does IDA* perform (counting nodes gen-
erated at each iteration)?

3. Calculate the overhead ratio.

4. Why might IDA* still be preferred despite the overhead?

Solution:
[label=(i)]

1. A* expansions:
A* expands all nodes with f(n) < C∗ and some nodes with f(n) = C∗.
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Assuming worst case (all nodes at depths 0 through 4):

NA∗ = 1 + 3 + 9 + 27 + 81 =
35 − 1

3− 1
=

242

2
= 121 nodes

More precisely, A* expands all nodes up to depth d:

NA∗ =
4∑

i=0

3i = 121 nodes

2. IDA* node generations:
IDA* performs iterations with increasing f -limit: 0, 1, 2, 3, 4.
At each iteration, it generates nodes up to that depth:

• Iteration 0 (f -limit = 0): Generate root = 1 node
• Iteration 1 (f -limit = 1): Generate depth 0,1 = 1 + 3 = 4 nodes
• Iteration 2 (f -limit = 2): Generate depth 0,1,2 = 1 + 3 + 9 = 13

nodes
• Iteration 3 (f -limit = 3): Generate depth 0,1,2,3 = 1+3+9+27 = 40

nodes
• Iteration 4 (f -limit = 4): Generate depth 0,1,2,3,4 = 1 + 3 + 9 +

27 + 81 = 121 nodes

Total: 1 + 4 + 13 + 40 + 121 = 179 node generations

3. Overhead ratio:

Overhead =
NIDA∗

NA∗
=

179

121
≈ 1.48

IDA* generates about 48% more nodes than A*.
General formula for overhead:
For depth d and branching factor b:

NIDA∗ =

d∑
i=0

i∑
j=0

bj =

d∑
i=0

bi+1 − 1

b− 1

As d increases, overhead approaches:

lim
d→∞

NIDA∗

NA∗
=

b

b− 1

For b = 3: Asymptotic overhead = 3
2 = 1.5
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4. Why prefer IDA* despite overhead:
Space complexity advantage:

• A*: O(bd) space — must store all generated nodes
• IDA*: O(d) space — only stores current path

For our example:

• A* space: 121 nodes in memory
• IDA* space: 4 nodes in memory (depth of current path)

Practical implications:

• For b = 10, d = 10: A* needs 1010 nodes in memory (10 billion) —
infeasible

• IDA* needs only 10 nodes — trivial
• Time overhead of 50% is acceptable when space savings are dra-

matic
• IDA* can solve problems where A* runs out of memory

Additional IDA* advantages:

• Anytime algorithm: can return best solution found if interrupted
• Better cache locality (depth-first traversal)
• Simpler implementation (recursive)

■

Exercise 3.7. Consistency vs. Admissibility:
[label=(g)]

1. Give an example of a heuristic that is admissible but not consistent.

2. Prove that every consistent heuristic is admissible.

3. Explain why graph search A* requires consistency for optimality while
tree search only requires admissibility.

Solution:
[label=(i)]

1. Example: Admissible but not consistent
Consider a 3-node graph:

Start (S) --1--> Middle (M) --1--> Goal (G)
\-------------------3----------------/
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Edge costs: c(S,M) = 1, c(M,G) = 1, c(S,G) = 3

True costs: h∗(S) = 2, h∗(M) = 1, h∗(G) = 0

Define heuristic:

• h(S) = 2 (correct)
• h(M) = 0 (underestimates)
• h(G) = 0 (correct)

Admissibility check:

• h(S) = 2 ≤ h∗(S) = 2

• h(M) = 0 ≤ h∗(M) = 1

• h(G) = 0 ≤ h∗(G) = 0

Admissible!
Consistency check: Check edge (S,M):

h(S) ≤ c(S,M) + h(M)

2 ≤ 1 + 0 = 1

2 ̸≤ 1

Not consistent!

2. Proof: Consistency⇒ Admissibility
Let h be a consistent heuristic. We’ll prove h is admissible by showing
h(n) ≤ h∗(n) for all nodes n.
Consider any path from node n to goal g:

n = n0
a1−→ n1

a2−→ n2
a3−→ · · · ak−→ nk = g

By consistency at each step:

h(n0) ≤ c(n0, a1, n1) + h(n1) (3.14)
h(n1) ≤ c(n1, a2, n2) + h(n2) (3.15)

... (3.16)
h(nk−1) ≤ c(nk−1, ak, nk) + h(nk) (3.17)

Since nk = g is a goal: h(g) = 0
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Adding all inequalities:

h(n0) ≤ c(n0, a1, n1) + h(n1) (3.18)
≤ c(n0, a1, n1) + c(n1, a2, n2) + h(n2) (3.19)
≤ · · · (3.20)
≤ c(n0, a1, n1) + · · ·+ c(nk−1, ak, nk) + h(nk) (3.21)
= path-cost(n→ g) + 0 (3.22)

This holds for ANY path from n to g, therefore:

h(n) ≤ min
paths n→g

path-cost(n→ g) = h∗(n)

Thus h is admissible. □

3. Graph search requires consistency:
Problem with inadmissible-only heuristic in graph search:
Graph search maintains a closed set and never re-expands nodes. With
only admissibility (not consistency), we can reach a node via a subop-
timal path, place it in the closed set, and never reconsider it when the
optimal path to it is found later.
Example using heuristic from part (a):
Start at S, goal at G:

• f(S) = 0 + 2 = 2

• Expand S, generate M and direct path to G
• f(M) = 1 + 0 = 1 (via S →M )
• f(G) = 3 + 0 = 3 (via direct edge S → G)

Priority queue: {M :1, G:3}

• Expand M (lowest f ), generate G
• f(G) = 2 + 0 = 2 (via S →M → G)
• But G already in frontier with f = 3 from direct path
• Update: G now has f = 2

• Expand G with path cost 2 (optimal)

Actually this works! Let me reconsider with a worse case:
Better example where graph search fails:

S --1--> A --1--> G
| ^
| |
+------100------+
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Heuristic: h(S) = 100, h(A) = 0, h(G) = 0

• Expand S: generate A and G

• f(A) = 1 + 0 = 1

• f(G) = 100 + 0 = 100 (direct)

• Expand A: generate G

• f(G) = 2 + 0 = 2 (via A)

• But with graph search, if we already addedG to closed set via the
direct path, we won’t update it!

Wait, but A is expanded first (f = 1 < f = 100), so G via A is found
before G directly.

The key issue: Without consistency, we might add a node to the
closed set via an expensive path, then find a cheaper path later, but
graph search won’t reconsider it.

Tree search: Always considers all paths, so admissibility alone suf-
fices.

Graph search with consistency: Consistency ensures that when
we expand a node, we’ve found the optimal path to it (because f is
non-decreasing). This guarantees we don’t need to reconsider nodes.

■

Exercise 3.8. MCTS for Tic-Tac-Toe: Implement pseudocode for MCTS
applied to Tic-Tac-Toe. Include:

[label=(h)]

1. Node structure

2. Selection using UCT

3. Expansion policy

4. Simulation (random playout)

5. Backpropagation

Solution:
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Algorithm 16 MCTS for Tic-Tac-Toe
1: Node Structure:
2: Each node contains:
3: - state: game position
4: - parent: parent node
5: - children: list of child nodes
6: - visits: N = number of times visited
7: - wins: Q = total reward from this node
8: - untriedMoves: list of legal moves not yet expanded

9: function MCTS-Decision(state, time_limit)
10: root← Node(state)
11: end_time← current_time() + time_limit
12: while current_time() < end_time do
13: node← Select(root)
14: node← Expand(node)
15: reward← Simulate(node)
16: Backpropagate(node, reward)
17: end while
18: return child of root with highest N (most visited)
19: end function

20: function Select(node) ▷ UCT Selection
21: while node is not terminal AND node is fully expanded do
22: node← BestChild(node, C =

√
2)

23: end while
24: return node
25: end function

26: function BestChild(node, C) ▷ UCB1 formula
27: best_score← −∞
28: best_child← null
29: for each child in node.children do
30: exploit← child.wins / child.visits
31: explore← C ·

√
ln(node.visits)/child.visits

32: score← exploit + explore
33: if score > best_score then
34: best_score← score
35: best_child← child
36: end if
37: end for
38: return best_child
39: end function

40: function Expand(node) ▷ Add one child
41: if node is terminal then
42: return node
43: end if
44: if node.untriedMoves is not empty then
45: move← node.untriedMoves.pop()
46: new_state← Apply(node.state, move)
47: child← Node(new_state, parent=node)
48: node.children.append(child)
49: return child
50: end if
51: return node
52: end function

53: function Simulate(node) ▷ Random playout
54: state← copy(node.state)
55: while state is not terminal do
56: move← random choice from legal_moves(state)
57: state← Apply(state, move)
58: end while
59: return utility(state) ▷ +1 for win, 0 for draw, -1 for loss
60: end function

61: function Backpropagate(node, reward)
62: while node is not null do
63: node.visits← node.visits + 1
64: node.wins← node.wins + reward
65: reward← −reward ▷ Flip for opponent
66: node← node.parent
67: end while
68: end function
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Key Design Choices for Tic-Tac-Toe:

1. Node Structure:

• Store complete game state (3×3 board)
• Track visits and wins from perspective of parent’s player
• Maintain untried moves for efficient expansion

2. UCT Selection (C =
√
2):

• Balances exploitation (high win rate) vs exploration (low visit
count)

• C =
√
2 is theoretically optimal for many domains

• Can be tuned: higher C explores more, lower C exploits more

3. Expansion Policy:

• Expand one child per iteration (conservative)
• Could expand all children at once for shallow games
• Tic-Tac-Toe has max branching factor 9, so full expansion is fea-

sible

4. Simulation (Random Playout):

• For Tic-Tac-Toe: completely random moves work reasonably well
• For more complex games: use domain-specific heuristics
• Faster playouts allow more iterations in time budget

5. Backpropagation:

• Flip reward sign at each level (zero-sum game)
• All ancestors benefit from outcome information
• Visits count propagates up, building confidence in estimates

Performance Notes:

• With sufficient iterations (1000+), MCTS plays perfectly in Tic-Tac-Toe

• Never loses, forces draws against optimal play

• Adapts to opponent mistakes without explicit game tree analysis

• More powerful for games where exhaustive search is infeasible (Go,
large Chess)

■
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Exercise 3.9. CSP Arc Consistency: Consider the map coloring prob-
lem for three regions: WA, NT, SA with three colors: {Red, Green, Blue}.
Constraints: Adjacent regions must have different colors.

WA --- NT
| |
+--SA--+

[label=(i)]

1. Initially all domains are {R,G,B}. Assign WA = Red. Apply forward
checking.

2. From the resulting domains, apply AC-3. Show all arcs processed and
domain reductions.

3. Is the problem still satisfiable? If yes, find a solution.

Solution:
[label=(i)]

1. Forward Checking after WA = Red:
Assignment: WA = Red
Forward checking: Remove inconsistent values from neighbors’ do-
mains.
Neighbors of WA: NT, SA

• NT: Remove Red → NT ∈ {Green, Blue}
• SA: Remove Red → SA ∈ {Green, Blue}

Resulting domains:

• WA = {Red} (assigned)
• NT = {Green, Blue}
• SA = {Green, Blue}

2. AC-3 Application:
Initial queue of arcs:

(NT, SA), (SA,NT ), (NT,WA), (SA,WA)

Note: Arcs (WA, NT) and (WA, SA) don’t need checking since WA is
assigned.
Process (NT, SA):
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• For each value in NT {Green, Blue}, is there a supporting value
in SA?

• Green in NT: SA can be Blue
• Blue in NT: SA can be Green
• No revision needed

Process (SA, NT):

• For each value in SA {Green, Blue}, is there a supporting value
in NT?

• Green in SA: NT can be Blue
• Blue in SA: NT can be Green
• No revision needed

Process (NT, WA):

• For each value in NT {Green, Blue}, is there a supporting value
in WA?

• WA = {Red}
• Green in NT: WA = Red Green
• Blue in NT: WA = Red Blue
• No revision needed (all values already consistent)

Process (SA, WA):

• For each value in SA {Green, Blue}, is there a supporting value
in WA?

• WA = {Red}
• Green in SA: WA = Red Green
• Blue in SA: WA = Red Blue
• No revision needed

Queue empty. AC-3 terminates.
Final domains after AC-3:

• WA = {Red}
• NT = {Green, Blue}
• SA = {Green, Blue}

Note: AC-3 didn’t reduce domains further because NT and SA have
two colors each and only need to be different from each other—both
colors work.
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3. Satisfiability and Solution:
Yes, the problem is satisfiable.
Solution 1:

• WA = Red
• NT = Green
• SA = Blue

Verification:

• WA-NT: Red Green
• WA-SA: Red Blue
• NT-SA: Green Blue

Solution 2:

• WA = Red
• NT = Blue
• SA = Green

Both solutions are valid. The CSP has two solutions after WA is as-
signed Red.

■

3.10 Conclusion
Problem-solving through search is fundamental to AI. The algorithms and
techniques presented form the backbone of intelligent systems that must
find solutions in complex state spaces.

Key Takeaways:
1. Uninformed search provides completeness and optimality guarantees

but can be expensive

2. Informed search with good heuristics dramatically improves perfor-
mance

3. A* with admissible heuristics is optimal and can be remarkably effi-
cient

4. Memory-bounded variants (IDA*, SMA*) enable solving problems where
A* runs out of memory

5. Adversarial search requires fundamentally different algorithms (min-
imax, alpha-beta)
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6. Modern techniques combine classical search with machine learning
(MCTS, neural heuristics)

The field continues to evolve, with neural approaches learning search
strategies and heuristics from data, sometimes surpassing hand-crafted al-
gorithms in complex domains.



Chapter 4

Knowledge
Representation and
Reasoning

4.1 Introduction to Knowledge Representation
Knowledge Representation (KR) is the study of how to encode information
about the world in a form that a computer system can use to reason about
and solve complex tasks. It serves as the bridge between raw data and
intelligent reasoning.

4.1.1 The Knowledge Representation Hypothesis
Allen Newell formulated the Physical Symbol System Hypothesis: "A
physical symbol system has the necessary and sufficient means for general
intelligent action."

This leads to key questions:

• What should we represent? (ontology)

• How should we represent it? (syntax)

• What does it mean? (semantics)

• How do we reason with it? (inference)

4.1.2 Requirements for a KR System
1. Representational Adequacy: Can express everything we need to

say about the domain

93
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2. Inferential Adequacy: Can derive new knowledge from existing knowl-
edge

3. Inferential Efficiency: Can perform inference in reasonable time

4. Acquisitional Efficiency: Easy to acquire and encode new knowl-
edge

4.1.3 The Semantic Network of KR Formalisms
• Propositional Logic: Simple, decidable, but limited expressiveness

• First-Order Logic: Expressive, semi-decidable, foundation of theo-
rem proving

• Description Logics: Balanced expressiveness and decidability

• Probabilistic Models: Handle uncertainty but computationally ex-
pensive

• Neural-Symbolic Hybrids: Modern approach combining learning
and reasoning

4.2 Propositional Logic
4.2.1 Syntax and Semantics
Syntax: The grammar of the language.

Atoms: P,Q,R, . . . (proposition symbols)
Sentences: Recursively defined:

• Every atom is a sentence

• If α is a sentence, so is ¬α (negation)

• If α and β are sentences, so are:

– α ∧ β (conjunction)
– α ∨ β (disjunction)
– α⇒ β (implication)
– α⇔ β (biconditional)

Semantics: The meaning.
A model is an assignment of truth values to proposition symbols. A

sentence is:

• Valid (tautology) if true in all models
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• Satisfiable if true in at least one model

• Unsatisfiable (contradiction) if true in no models

Logical Entailment: α |= β means: in every model where α is true, β
is also true.

4.2.2 Inference Rules
Modus Ponens

α⇒ β, α

β

And-Elimination
α ∧ β
α

Resolution

The foundation of automated theorem proving:

α ∨ β, ¬β ∨ γ
α ∨ γ

Key Insight: Resolution is refutation complete: if KB |= α, then
KB ∧ ¬α is unsatisfiable, and resolution will derive a contradiction.

4.2.3 Conjunctive Normal Form (CNF)
Every propositional sentence can be converted to CNF: a conjunction of dis-
junctions of literals.

Example: (A ∨ ¬B) ∧ (B ∨ C ∨ ¬D)

Conversion Algorithm:

1. Eliminate implications: α⇒ β ≡ ¬α ∨ β

2. Move negations inward (De Morgan’s Laws):

• ¬(α ∧ β) ≡ ¬α ∨ ¬β
• ¬(α ∨ β) ≡ ¬α ∧ ¬β

3. Distribute ∨ over ∧: α ∨ (β ∧ γ) ≡ (α ∨ β) ∧ (α ∨ γ)
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4.2.4 Resolution Algorithm

Algorithm 17 Resolution-Based Theorem Proving
1: function PL-Resolution(KB, α)
2: clauses← CNF(KB ∧¬α)
3: new← {}
4: loop
5: for each pair (Ci, Cj) of clauses in clauses do
6: resolvents← Resolve(Ci, Cj)
7: if resolvents contains empty clause then
8: return true ▷ KB |= α
9: end if

10: new← new ∪ resolvents
11: end for
12: if new ⊆ clauses then
13: return false ▷ KB ̸|= α
14: end if
15: clauses← clauses ∪ new
16: end loop
17: end function

4.2.5 DPLL Algorithm

More efficient than resolution for satisfiability testing.
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Algorithm 18 DPLL (Davis-Putnam-Logemann-Loveland)
1: function DPLL(clauses, symbols, model)
2: if every clause in clauses is true in model then
3: return true
4: end if
5: if some clause in clauses is false in model then
6: return false
7: end if
8: ▷ Pure symbol heuristic
9: P , value← FindPureSymbol(symbols, clauses, model)

10: if P is non-null then
11: return DPLL(clauses, symbols −P , model ∪{P = value})
12: end if
13: ▷ Unit clause heuristic
14: P , value← FindUnitClause(clauses, model)
15: if P is non-null then
16: return DPLL(clauses, symbols −P , model ∪{P = value})
17: end if
18: ▷ Branching
19: P ← First(symbols)
20: return DPLL(clauses, symbols −P , model ∪{P = true})
21: or DPLL(clauses, symbols −P , model ∪{P = false})
22: end function

4.3 First-Order Logic (FOL)
4.3.1 Motivation and Syntax
Propositional logic cannot express statements like "All humans are mortal"
without enumerating every human. FOL adds:

Constants: John, Mary, 2 (denote objects)
Variables: x, y, z (range over objects)
Predicates: Human(x), Loves(x, y) (properties and relations)
Functions: FatherOf(x), Plus(x, y) (map objects to objects)
Quantifiers:

• ∀x (universal): "for all x"

• ∃x (existential): "there exists an x"

Sentences:

• Atomic: Predicate(term1, . . . , termn)

• Complex: Built using connectives and quantifiers
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4.3.2 Semantics
Model: A tuple ⟨D, I⟩ where:

• D is a domain (set of objects)

• I is an interpretation function mapping:

– Constants to objects in D

– Predicates to relations over D

– Functions to functions on D

Variable Assignment: Maps variables to objects in D

Satisfaction: (M, g) |= α means sentence α is true in model M under
assignment g.

4.3.3 Universal Instantiation and Existential Instanti-
ation

Universal Instantiation (UI):

∀xα(x)
α(c)

For any constant c or ground term.
Existential Instantiation (EI):

∃xα(x)
α(k)

Where k is a new constant symbol (Skolem constant) not used elsewhere.

4.3.4 Unification
Unification finds substitutions that make different expressions identical.

Substitution: θ = {x1/t1, x2/t2, . . .} where each xi is a variable and
each ti is a term.

Most General Unifier (MGU): The most general substitution that uni-
fies two expressions.

Unification Algorithm:



4.3. FIRST-ORDER LOGIC (FOL) 99

Algorithm 19 Unify
1: function Unify(x, y, θ)
2: if θ = failure then
3: return failure
4: else if x = y then
5: return θ
6: else if x is a variable then
7: return UnifyVar(x, y, θ)
8: else if y is a variable then
9: return UnifyVar(y, x, θ)

10: else if x and y are both compounds then
11: return Unify(Args[x], Args[y], Unify(Op[x], Op[y], θ))
12: else
13: return failure
14: end if
15: end function

16: function UnifyVar(var, x, θ)
17: if var is bound in θ then
18: return Unify(θ(var), x, θ)
19: else if x is bound in θ then
20: return Unify(var, θ(x), θ)
21: else if var occurs in x then ▷ Occur check
22: return failure
23: else
24: return θ ∪ {var/x}
25: end if
26: end function

4.3.5 Forward Chaining

Data-driven inference from facts to conclusions.
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Algorithm 20 Forward Chaining
1: function FOL-FC-Ask(KB, α)
2: count← table where count[c] = number of premises in clause c
3: inferred← table initially false for all symbols
4: queue← all facts in KB
5: while queue is not empty do
6: p← Pop(queue)
7: if p = α then
8: return true
9: end if

10: if inferred[p] = false then
11: inferred[p]← true
12: for each clause c where p is in premises do
13: count[c]← count[c] - 1
14: if count[c] = 0 then
15: Push(queue, Conclusion(c))
16: end if
17: end for
18: end if
19: end while
20: return false
21: end function

4.3.6 Backward Chaining
Goal-directed inference.

Algorithm 21 Backward Chaining
1: function FOL-BC-Ask(KB, goals)
2: if goals is empty then
3: return {}
4: end if
5: q ← First(goals)
6: for each clause c in KB where Unify(Conclusion(c), q) = θ do
7: goals’← Subst(θ, Premises(c) ∪ Rest(goals))
8: for each θ′ in FOL-BC-Ask(KB, goals’) do
9: yield Compose(θ′, θ)

10: end for
11: end for
12: end function

4.3.7 Resolution in FOL
Steps:
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1. Convert KB and ¬α to CNF

2. Skolemization: Eliminate existential quantifiers by introducing Skolem
functions

3. Drop universal quantifiers (implicitly universally quantified)

4. Apply resolution rule with unification

Example:

∀x[Human(x)⇒Mortal(x)]
Human(Socrates)

Convert to CNF:

¬Human(x) ∨Mortal(x)
Human(Socrates)

Query: Mortal(Socrates)?
Add ¬Mortal(Socrates) and resolve:

Resolve(¬Human(x) ∨Mortal(x),Human(Socrates))
with θ = {x/Socrates}

= Mortal(Socrates)

Resolves with ¬Mortal(Socrates) to give empty clause . Therefore, query
is proven.

4.4 Knowledge Representation Frameworks
4.4.1 Semantic Networks
Structure: Graph where:

• Nodes represent concepts/objects

• Edges represent relationships (IS-A, HAS-A, etc.)

Inference: Inheritance through IS-A links
Limitations:

• Informal semantics

• Difficult to represent complex relationships

• Exception handling is ad-hoc
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4.4.2 Frames
Structured representations with slots and fillers.

Example Frame:

Frame: Dog
IS-A: Mammal
HAS-PARTS: [4 legs, tail, fur]
HABITAT: Land
BEHAVIOR: Barks

Inheritance: Slots can be inherited from parent frames with defaults
and exceptions.

4.4.3 Description Logics
Family of formal KR languages balancing expressiveness and decidability.

Basic DL (ALC):

• Concepts: C,D ::= A | ⊤ | ⊥ | ¬C | C ⊓D | C ⊔D | ∀R.C | ∃R.C

• Roles: R (binary relations)

TBox (Terminology): Concept definitions

• Parent ≡ Person ⊓ ∃hasChild.Person

ABox (Assertions): Facts about individuals

• Parent(Mary)

• hasChild(Mary, John)

Reasoning Tasks:

• Subsumption: Is C ⊑ D?

• Consistency: Is the knowledge base consistent?

• Instance checking: Is a an instance of C?

4.5 Probabilistic Reasoning
4.5.1 Bayesian Networks
Definition: A Directed Acyclic Graph (DAG) where:

• Nodes represent random variables

• Edges represent direct probabilistic dependencies



4.5. PROBABILISTIC REASONING 103

• Each node has a Conditional Probability Table (CPT)

Joint Distribution Factorization:

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|Parents(Xi))

Conditional Independence: A node is conditionally independent of
its non-descendants given its parents.

D-Separation: Algorithm to determine conditional independence from
graph structure.

Inference in Bayesian Networks
Exact Inference:

• Variable Elimination: Sum out variables one at a time

• Junction Tree Algorithm: Convert to tree structure for efficient
inference

Approximate Inference:

• Sampling Methods: Monte Carlo, Gibbs Sampling

• Variational Inference: Approximate posterior with simpler distri-
bution

4.5.2 Markov Random Fields
Undirected graphical models. Joint distribution:

P (X1, . . . , Xn) =
1

Z

∏
c∈cliques

ψc(Xc)

where ψc are potential functions and Z is the partition function.

4.5.3 Hidden Markov Models (HMMs)
Components:

• Hidden states: Xt

• Observations: Et

• Transition model: P (Xt|Xt−1)

• Sensor model: P (Et|Xt)

• Initial state distribution: P (X0)
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Inference Tasks:
• Filtering: P (Xt|E1:t) (current state given observations)

• Smoothing: P (Xk|E1:t) for k < t (past state)

• Prediction: P (Xt+k|E1:t) for k > 0 (future state)

• Most Likely Sequence: argmaxx1:t
P (X1:t|E1:t) (Viterbi algorithm)

Forward Algorithm (Filtering):

P (Xt|E1:t) = αP (Et|Xt)
∑
xt−1

P (Xt|xt−1)P (xt−1|E1:t−1)

4.6 Modern Knowledge Representation
4.6.1 Knowledge Graphs
Structure: Massive graphs encoding factual knowledge

• Entities (nodes): Barack Obama, USA, President

• Relations (edges): bornIn, presidentOf, marriedTo
Examples:
• Google Knowledge Graph: 500B+ facts about 5B+ entities

• Wikidata: 100M+ items, 1.4B+ statements

• DBpedia: Structured data from Wikipedia
Applications:
• Search enhancement (knowledge panels)

• Question answering

• Recommendation systems

Knowledge Graph Embeddings
Map entities and relations to continuous vector spaces.

TransE Model:
h+ r ≈ t

For triple (head, relation, tail), embeddings should satisfy: h+ r ≈ t
Loss Function:

L =
∑

(h,r,t)∈S

∑
(h′,r′,t′)∈S′

[γ + d(h+ r, t)− d(h′ + r′, t′)]+

where S are positive triples, S′ are negative (corrupted) triples.
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4.6.2 Ontologies
Definition: Formal specification of a shared conceptualization.

Components:

• Classes (concepts)

• Individuals (instances)

• Properties (relationships)

• Axioms (constraints)

Web Ontology Language (OWL): W3C standard based on description
logics.

Example:

Class: Professor
SubClassOf: Person
SubClassOf: teaches some Course

Individual: DrSmith
Types: Professor
Facts: teaches CS101

4.6.3 Neuro-Symbolic AI
Integration of neural networks (learning from data) with symbolic reason-
ing (logical inference).

Approaches:

1. Neural Networks for Symbolic AI: Use NNs to learn heuristics,
similarity metrics

2. Symbolic AI for Neural Networks: Use logic to constrain or explain
NN decisions

3. Hybrid Architectures: Tight integration at architectural level

Logic Tensor Networks (LTN)
Represent logical formulas as differentiable operations on real-valued ten-
sors.

Example:

• Predicates as neural networks: P (x) ∈ [0, 1]

• Logical connectives:

– AND: α ∧ β = min(α, β) or α · β
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– OR: α ∨ β = max(α, β)

– NOT: ¬α = 1− α

• Quantifiers:

– ∀xP (x) = minx P (x) or aggregate
– ∃xP (x) = maxx P (x)

Retrieval-Augmented Generation (RAG)
Architecture:

1. Query from user

2. Retrieve relevant documents from knowledge base (using semantic
search)

3. Augment LLM context with retrieved documents

4. Generate response grounded in retrieved knowledge

Components:
• Retriever: Dense passage retrieval using learned embeddings

• Generator: Large language model (GPT, T5, etc.)

• Knowledge Base: Vector database of document embeddings

Advantages:
• Reduces hallucination by grounding in facts

• Allows updating knowledge without retraining

• Can cite sources for verification

4.7 Problems and Solutions
Warm-up Problems
Exercise 4.1. Logical Equivalence: Prove that α ⇒ β ≡ ¬α ∨ β using
truth tables.

Solution:
α β α⇒ β ¬α ¬α ∨ β
T T T F T
T F F F F
F T T T T
F F T T T
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Columns 3 and 5 are identical, proving equivalence. ■

Exercise 4.2. CNF Conversion: Convert (P ⇒ Q) ∧ (Q⇒ R) to CNF.

Solution: Step 1: Eliminate implications

(¬P ∨Q) ∧ (¬Q ∨R)

Step 2: Already in CNF (conjunction of disjunctive clauses).
Result: (¬P ∨Q) ∧ (¬Q ∨R) ■

Standard Problems
Exercise 4.3. Resolution Proof: Given KB: {P ∨ Q,¬Q ∨ R,¬R}, prove
P using resolution.

Solution: Goal: Prove P
Step 1: Add ¬P to KB (proof by contradiction)
KB = {P ∨Q,¬Q ∨R,¬R,¬P}
Step 2: Apply resolution
Resolve ¬Q ∨R with ¬R:

¬Q ∨R, ¬R
¬Q

Resolve P ∨Q with ¬Q:

P ∨Q, ¬Q
P

Resolve P with ¬P :
P, ¬P

□

Empty clause derived! Therefore KB |= P . ■

Exercise 4.4. Unification: Find the MGU for the following pairs:
[label=(d)]

1. P (x, f(y)) and P (a, z)

2. Q(x, x) and Q(y, f(y))

3. R(g(x), y) and R(z, h(z))
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Solution:
[label=(g)]

1. Unifying P (x, f(y)) and P (a, z):
Match predicates: Both are P
Match first arguments: x with a → {x/a}
Match second arguments: f(y) with z → {z/f(y)}
MGU: θ = {x/a, z/f(y)}
Result: P (a, f(y))

2. Unifying Q(x, x) and Q(y, f(y)):
Match predicates: Both are Q
Match first arguments: x with y → {x/y} or {y/x}, let’s use {x/y}
Apply to second arguments: Match y with f(y)

Occur check fails! Variable y occurs in term f(y), creating infinite
structure.
No MGU exists.

3. Unifying R(g(x), y) and R(z, h(z)):
Match predicates: Both are R
Match first arguments: g(x) with z → {z/g(x)}
Apply and match second arguments: y with h(g(x)) → {y/h(g(x))}
MGU: θ = {z/g(x), y/h(g(x))}
Result: R(g(x), h(g(x)))

■

Exercise 4.5. FOL Translation: Translate the following English sen-
tences into First-Order Logic:

[label=(e)]
1. "All students who study hard pass the exam."

2. "Some professor teaches every course."

3. "No one likes to pay taxes."

4. "Everyone has a mother."

Solution:
[label=(g)]

1. "All students who study hard pass the exam."

∀x[(Student(x) ∧ StudiesHard(x))⇒ PassesExam(x)]
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2. "Some professor teaches every course."

∃x[Professor(x) ∧ ∀y(Course(y)⇒ Teaches(x, y))]

Note: This is different from "Every course is taught by some profes-
sor":

∀y[Course(y)⇒ ∃x(Professor(x) ∧ Teaches(x, y))]

3. "No one likes to pay taxes."

¬∃x[Person(x) ∧ Likes(x,PayTaxes)]

Equivalently:

∀x[Person(x)⇒ ¬Likes(x,PayTaxes)]

4. "Everyone has a mother."

∀x∃y[Mother(y, x)]

Or using a function:

∀x[Mother(MotherOf(x), x)]

■

Advanced Problems
Exercise 4.6. Bayesian Network Inference: Consider the following Bayesian
Network:

B (Burglary) E (Earthquake)
\ /
\ /
A (Alarm)

/ \
/ \

J (John calls) M (Mary calls)

Given:

• P (B) = 0.001, P (E) = 0.002

• P (A|B,E) = 0.95, P (A|B,¬E) = 0.94, P (A|¬B,E) = 0.29, P (A|¬B,¬E) =
0.001

• P (J |A) = 0.90, P (J |¬A) = 0.05
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• P (M |A) = 0.70, P (M |¬A) = 0.01

Calculate P (B|J,M) (probability of burglary given both John and Mary
called).

Solution: Use Bayes’ theorem:

P (B|J,M) =
P (J,M |B)P (B)

P (J,M)

Step 1: Calculate P (J,M |B)
We need to sum over alarm states and earthquake:

P (J,M |B) =
∑

e∈{T,F}

∑
a∈{T,F}

P (J,M, a, e|B)

Since J and M are conditionally independent given A:

P (J,M |B) =
∑
e

∑
a

P (J |a)P (M |a)P (a|B, e)P (e)

For e = T (earthquake):

P (J,M |B,E)

= P (J |A)P (M |A)P (A|B,E) + P (J |¬A)P (M |¬A)P (¬A|B,E)

= (0.90)(0.70)(0.95) + (0.05)(0.01)(0.05)

= 0.5985 + 0.000025 = 0.598525

For e = F (no earthquake):

P (J,M |B,¬E)

= (0.90)(0.70)(0.94) + (0.05)(0.01)(0.06)

= 0.5922 + 0.00003 = 0.59223

Combine:

P (J,M |B) = P (J,M |B,E)P (E) + P (J,M |B,¬E)P (¬E)

= (0.598525)(0.002) + (0.59223)(0.998)

= 0.00119705 + 0.59128554 = 0.59248259

Step 2: Calculate P (J,M |¬B) similarly

P (J,M |¬B,E) = (0.90)(0.70)(0.29) + (0.05)(0.01)(0.71)

= 0.1827 + 0.000355 = 0.183055
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P (J,M |¬B,¬E) = (0.90)(0.70)(0.001) + (0.05)(0.01)(0.999)

= 0.00063 + 0.0004995 = 0.0011295

P (J,M |¬B) = (0.183055)(0.002) + (0.0011295)(0.998)

= 0.00036611 + 0.00112732 = 0.00149343

Step 3: Calculate P (J,M)

P (J,M) = P (J,M |B)P (B) + P (J,M |¬B)P (¬B)

= (0.59248259)(0.001) + (0.00149343)(0.999)

= 0.00059248 + 0.00149194 = 0.00208442

Step 4: Calculate P (B|J,M)

P (B|J,M) =
P (J,M |B)P (B)

P (J,M)

=
0.00059248

0.00208442
≈ 0.284 or 28.4%

Interpretation: Even though burglary is rare (0.1 ■

Exercise 4.7. Forward Chaining Trace: Given the following knowledge
base in Horn clause form:

• Missile(M1)

• Owns(Nono,M1)

• Missile(x) ∧Owns(Nono, x)⇒ Sells(West, x,Nono)

• Missile(x) ∧ Sells(y, x, z)⇒ Criminal(y)

• Enemy(x,America)⇒ Hostile(x)

• Enemy(Nono,America)

Trace forward chaining to prove Criminal(West).

Solution: Initial Facts:

• Missile(M1)

• Owns(Nono,M1)
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• Enemy(Nono,America)

Iteration 1: Apply rule: Missile(x)∧Owns(Nono, x)⇒ Sells(West, x,Nono)
Unify with x =M1:

Missile(M1) ∧Owns(Nono,M1)⇒ Sells(West,M1,Nono)

Both premises satisfied, so infer:

Sells(West,M1,Nono)

New facts:

• Sells(West,M1,Nono)

Iteration 2: Apply rule: Missile(x) ∧ Sells(y, x, z)⇒ Criminal(y)
Unify with x =M1, y = West, z = Nono:

Missile(M1) ∧ Sells(West,M1,Nono)⇒ Criminal(West)

Both premises satisfied, so infer:

Criminal(West)

Goal reached! Criminal(West) has been proven.
Proof trace:

1. Initial: Missile(M1), Owns(Nono,M1)

2. Infer: Sells(West,M1,Nono) (from rule 3)

3. Infer: Criminal(West) (from rule 4)

■

Exercise 4.8. Knowledge Graph Embedding: Given a small knowledge
graph with triples:

• (Paris, capitalOf, France)

• (London, capitalOf, UK)

• (Berlin, capitalOf, Germany)

[label=(h)]

1. Explain how TransE would represent these triples in embedding space.

2. If we want to add (Rome, capitalOf, Italy), how would TransE deter-
mine if this is a valid triple?
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3. What limitation of TransE makes it struggle with 1-to-N relations like
(France, hasCity, Paris/Lyon/Marseille)?

Solution:
[label=(g)]

1. TransE Representation:
TransE learns embeddings such that for each triple (h, r, t):

h+ r ≈ t

For our triples:

Paris+ capitalOf ≈ France

London+ capitalOf ≈ UK

Berlin+ capitalOf ≈ Germany

The relation vector capitalOf acts as a translation from capital cities
to their countries in the embedding space.
Geometric Interpretation: Cities of capitals cluster together, coun-
tries cluster together, and the capitalOf vector points from the city
cluster to the country cluster.

2. Validating (Rome, capitalOf, Italy):
TransE would:

(a) Look up embeddings: Rome and capitalOf (learned during train-
ing)

(b) Compute: Rome+ capitalOf

(c) Find nearest entity in embedding space
(d) If nearest entity is Italy (or distance is below threshold), triple is

valid

Scoring function:

score(Rome, capitalOf, Italy) = −∥Rome+ capitalOf − Italy∥

Higher (less negative) score indicates more valid triple.

3. Limitation with 1-to-N relations:
For relation (France, hasCity, x)where x ∈ {Paris, Lyon,Marseille, . . .}:
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TransE requires:

France+ hasCity ≈ Paris

France+ hasCity ≈ Lyon

France+ hasCity ≈Marseille

This implies:
Paris ≈ Lyon ≈Marseille

Problem: TransE forces all tail entities in 1-to-N relations to have
similar embeddings, losing the ability to distinguish between them.
Solutions:

• TransH: Projects entities onto relation-specific hyperplanes
• TransR: Uses separate entity and relation spaces with projection

matrices
• DistMult/ComplEx: Use different scoring functions (bilinear

models)

■

4.8 Conclusion
Knowledge representation and reasoning form the foundation of symbolic
AI, providing formal methods to encode knowledge and draw logical conclu-
sions. Modern systems increasingly combine classical symbolic approaches
with neural methods, leading to hybrid neuro-symbolic systems that lever-
age the strengths of both paradigms.

Key Takeaways:

1. Propositional logic is simple but limited; FOL adds expressiveness
through quantifiers and functions

2. Resolution theorem proving provides a complete inference method for
both propositional and first-order logic

3. Probabilistic reasoning handles uncertainty through Bayesian net-
works and graphical models

4. Knowledge graphs enable large-scale structured knowledge storage
with embedding methods for reasoning

5. Neuro-symbolic approaches like RAG combine neural learning with
symbolic knowledge for more robust AI systems
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Machine Learning

5.1 Introduction to Machine Learning
5.1.1 Defining Machine Learning
Tom Mitchell’s Definition (1997): "A computer program is said to learn
from experience E with respect to some class of tasks T and performance
measure P , if its performance at tasks in T , as measured by P , improves
with experience E."

This definition transforms the vague notion of "learning" into a concrete
engineering problem with three measurable components:

Example: Email Spam Detection

• Task (T ): Classify emails as spam or not spam

• Experience (E): Database of emails labeled by humans

• Performance (P ): Fraction of emails correctly classified

5.1.2 The Learning Paradigm Shift
Traditional Programming:

Rules + Data Execute−−−−→ Answers

Example: Hard-code IF-THEN rules for spam detection

1 if "viagra" in email or "lottery" in email:
2 return "spam"

Machine Learning:

Data + Answers Learn−−−→ Rules (Model)

115
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Example: Learn patterns from 10,000 labeled emails
Why ML Wins:
• Spam patterns evolve faster than we can update rules

• Thousands of subtle patterns (word combinations, formatting, meta-
data)

• Automatically adapts to new spam techniques

5.1.3 Types of Machine Learning
Supervised Learning
Setting: Training data consists of input-output pairs (xi, yi)

Goal: Learn function f : X → Y that predicts y from x
Sub-categories:
• Classification: Y is discrete (e.g., {spam, not spam})

• Regression: Y is continuous (e.g., house price in dollars)
Examples:
• Image classification (input: pixels, output: cat/dog/car)

• Speech recognition (input: audio, output: text)

• Medical diagnosis (input: symptoms, output: disease)

• Stock price prediction (input: historical data, output: tomorrow’s price)

Unsupervised Learning
Setting: Training data consists of inputs xi without labels

Goal: Discover hidden structure or patterns in data
Tasks:
• Clustering: Group similar data points together

• Dimensionality Reduction: Find compact representation of data

• Anomaly Detection: Identify unusual data points

• Density Estimation: Model probability distribution of data
Examples:
• Customer segmentation for marketing

• Gene expression pattern discovery

• Compression of images or audio

• Fraud detection
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Reinforcement Learning
Setting: Agent interacts with environment, receives rewards/penalties

Goal: Learn policy (strategy) to maximize cumulative reward
Examples:
• Game playing (Chess, Go, Atari games)

• Robot control and navigation

• Autonomous driving

• Resource allocation and scheduling

Key Difference from Supervised Learning:
• No explicit correct outputs given

• Delayed feedback (actions affect future rewards)

• Must balance exploration vs. exploitation

5.1.4 The Machine Learning Pipeline
1. Data Collection: Gather training examples

2. Data Preprocessing: Clean, normalize, handle missing values

3. Feature Engineering: Extract relevant features from raw data

4. Model Selection: Choose algorithm(s) to try

5. Training: Optimize model parameters on training data

6. Validation: Tune hyperparameters using validation set

7. Testing: Evaluate final model on held-out test set

8. Deployment: Put model into production

9. Monitoring: Track performance, retrain as needed

5.2 Fundamental Concepts
5.2.1 The Bias-Variance Tradeoff
Decomposition of Error
The expected prediction error can be decomposed:

E[(Y − f̂(X))2] = Bias2(f̂) + Var(f̂) + σ2

where:
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• Y : True output

• f̂ : Our learned model

• σ2: Irreducible error (noise in data)

Detailed Derivation
Let f(x) be the true function and f̂(x) be our estimate. Assume Y = f(X)+ϵ
where E[ϵ] = 0 and Var(ϵ) = σ2.

E[(Y − f̂(X))2] = E[(f(X) + ϵ− f̂(X))2]

= E[(f(X)− f̂(X))2] + E[ϵ2] + 2E[ϵ(f(X)− f̂(X))]

= E[(f(X)− f̂(X))2] + σ2 (since E[ϵ] = 0)

Now decompose E[(f(X)− f̂(X))2] by adding and subtracting E[f̂(X)]:

E[(f(X)− f̂(X))2]

= E[(f(X)− E[f̂(X)] + E[f̂(X)]− f̂(X))2]

= E[(f(X)− E[f̂(X)])2] + E[(E[f̂(X)]− f̂(X))2]

+ 2E[(f(X)− E[f̂(X)])(E[f̂(X)]− f̂(X))]

The cross term vanishes:

2E[(f(X)− E[f̂(X)])(E[f̂(X)]− f̂(X))]

= 2(f(X)− E[f̂(X)])E[E[f̂(X)]− f̂(X)]

= 2(f(X)− E[f̂(X)]) · 0 = 0

Therefore:

E[(Y − f̂(X))2] = (f(X)− E[f̂(X)])2︸ ︷︷ ︸
Bias2

+E[(f̂(X)− E[f̂(X)])2]︸ ︷︷ ︸
Variance

+ σ2︸︷︷︸
Irreducible Error

Interpretation
Bias: Error from approximating real-world problem with simplified model

• High Bias: Model is too simple (underfit)

• Example: Fitting line to quadratic data

• Systematic error that persists even with infinite data

Variance: Error from sensitivity to small fluctuations in training data
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• High Variance: Model is too complex (overfit)

• Example: Fitting 10th-degree polynomial to 11 points

• Model memorizes training data, fails to generalize

The Tradeoff:
• Simple models: High bias, low variance

• Complex models: Low bias, high variance

• Goal: Find sweet spot that minimizes total error

5.2.2 Overfitting and Regularization
Overfitting
Model learns training data too well, including noise and outliers, failing to
generalize.

Symptoms:
• Training error very low, test error high

• Large gap between training and validation performance

• Model has more parameters than training examples

Causes:
• Model too complex for amount of data

• Training for too long

• Not enough training data

Regularization Techniques
L2 Regularization (Ridge):

J(θ) = Loss(θ) + λ

n∑
j=1

θ2j

• Penalizes large weights

• Shrinks coefficients toward zero

• Differentiable (smooth optimization)

L1 Regularization (Lasso):

J(θ) = Loss(θ) + λ

n∑
j=1

|θj |
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• Encourages sparsity (some weights become exactly zero)

• Performs feature selection

• Non-differentiable at zero
Elastic Net: Combines L1 and L2

J(θ) = Loss(θ) + λ1
∑
j

|θj |+ λ2
∑
j

θ2j

Dropout (for Neural Networks):
• Randomly zero out neurons during training

• Prevents co-adaptation of features

• Equivalent to ensemble of networks
Early Stopping:
• Monitor validation error during training

• Stop when validation error starts increasing

• Simple and effective
Data Augmentation:
• Artificially expand training set

• For images: rotation, flipping, cropping, color jittering

• Provides implicit regularization

5.2.3 Cross-Validation
Motivation
Single train/test split can be misleading due to variance in split.

K-Fold Cross-Validation

Algorithm 22 K-Fold Cross-Validation
1: Split data into K equal folds
2: for i = 1 to K do
3: Use fold i as validation set
4: Use remaining K − 1 folds as training set
5: Train model and evaluate on fold i
6: Record validation score si
7: end for
8: return average score: 1

K

∑K
i=1 si
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Typical Values: K = 5 or K = 10
Leave-One-Out CV: Special case where K = n (number of examples)
• Unbiased but computationally expensive

• High variance in estimate
Stratified K-Fold: Preserve class distribution in each fold
• Important for imbalanced datasets

• Ensures each fold is representative

5.2.4 Evaluation Metrics
Classification Metrics
Confusion Matrix:

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Accuracy:
Accuracy =

TP + TN

TP + TN + FP + FN

Problem: Misleading on imbalanced datasets
Example: 99% of emails are not spam. Classifier that always outputs

"not spam" has 99% accuracy but is useless!
Precision: Of predicted positives, how many are correct?

Precision =
TP

TP + FP

Recall (Sensitivity): Of actual positives, how many did we find?

Recall = TP

TP + FN

F1 Score: Harmonic mean of precision and recall

F1 =
2 · Precision · Recall
Precision + Recall =

2TP

2TP + FP + FN

Why Harmonic Mean? Penalizes extreme values (if either precision
or recall is very low, F1 is low)

Specificity: Of actual negatives, how many did we correctly identify?

Specificity =
TN

TN + FP

ROC Curve: Plot of True Positive Rate vs. False Positive Rate at vari-
ous thresholds
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• TPR = Recall = TP
TP+FN

• FPR = FP
FP+TN

• AUC (Area Under Curve): Summary metric, 1.0 is perfect, 0.5 is ran-
dom

Regression Metrics

Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi)2

Root Mean Squared Error (RMSE):

RMSE =
√
MSE

• Same units as target variable

• Penalizes large errors more heavily

Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|yi − ŷi|

• Less sensitive to outliers than MSE

• Easier to interpret

R2 (Coefficient of Determination):

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

• Fraction of variance explained

• R2 = 1: perfect fit

• R2 = 0: no better than predicting mean

• R2 < 0: worse than predicting mean
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5.3 Linear Models
5.3.1 Linear Regression
Model and Assumptions
Model:

y = θ0 + θ1x1 + θ2x2 + · · ·+ θnxn + ϵ

In matrix form:
y = Xθ + ϵ

Assumptions:
1. Linearity: Relationship between X and Y is linear

2. Independence: Observations are independent

3. Homoscedasticity: Constant variance of errors

4. Normality: Errors are normally distributed

Loss Function
Mean Squared Error (MSE):

J(θ) =
1

2m

m∑
i=1

(y(i) − θTx(i))2

In matrix form:

J(θ) =
1

2m
(y −Xθ)T (y −Xθ)

Normal Equations (Closed-Form Solution)
To minimize J(θ), take derivative and set to zero:

∂J

∂θ
= − 1

m
XT (y −Xθ) = 0

Solving for θ:
XTXθ = XTy

θ = (XTX)−1XTy

Computational Complexity: O(n3) for matrix inversion where n is
number of features

When to Use:
• Small number of features (n < 10, 000)

• XTX is invertible (full rank)

• Exact solution desired
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Gradient Descent

Batch Gradient Descent:

Algorithm 23 Batch Gradient Descent for Linear Regression
1: Initialize θ randomly
2: for iteration = 1 to max_iterations do
3: Compute gradient: ∇J = 1

mX
T (Xθ − y)

4: Update: θ ← θ − α∇J
5: if convergence criterion met then
6: break
7: end if
8: end for
9: return θ

Stochastic Gradient Descent (SGD):

• Update using single example at a time

• Much faster per iteration

• Noisy updates, but converges

Mini-Batch Gradient Descent:

• Update using small batch of examples

• Balances speed and stability

• Typical batch sizes: 32, 64, 128, 256

5.3.2 Ridge Regression (L2 Regularization)
Cost Function:

J(θ) =
1

2m

m∑
i=1

(y(i) − θTx(i))2 + λ

n∑
j=1

θ2j

Closed-Form Solution:

θ = (XTX + λI)−1XTy

Effect: Adding λI ensures XTX + λI is invertible and shrinks coeffi-
cients
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5.3.3 Lasso Regression (L1 Regularization)
Cost Function:

J(θ) =
1

2m

m∑
i=1

(y(i) − θTx(i))2 + λ

n∑
j=1

|θj |

Properties:

• No closed-form solution (use coordinate descent or proximal methods)

• Produces sparse solutions (many θj = 0)

• Performs automatic feature selection

5.3.4 Logistic Regression
Binary Classification
Problem: Linear regression outputs unbounded values, but we need prob-
abilities in [0, 1]

Solution: Apply sigmoid function

σ(z) =
1

1 + e−z

Properties of Sigmoid:

• σ(0) = 0.5

• limz→∞ σ(z) = 1

• limz→−∞ σ(z) = 0

• Derivative: σ′(z) = σ(z)(1− σ(z))

Model:
P (y = 1|x) = σ(θTx) =

1

1 + e−θTx

Cross-Entropy Loss
Likelihood for Single Example:

P (y|x) = hθ(x)
y(1− hθ(x))1−y

where hθ(x) = σ(θTx)
Log-Likelihood:

ℓ(θ) =

m∑
i=1

[y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x(i)))]
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Cost Function (Negative Log-Likelihood):

J(θ) = − 1

m

m∑
i=1

[y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x(i)))]

Gradient Descent for Logistic Regression

Gradient:
∂J

∂θj
=

1

m

m∑
i=1

(hθ(x
(i))− y(i))x(i)j

Update Rule:
θj ← θj − α

∂J

∂θj

Note: Same form as linear regression, but hθ is now sigmoid!

Multi-Class Logistic Regression (Softmax)

For K classes, use softmax function:

P (y = k|x) = eθ
T
k x∑K

j=1 e
θT
j x

Properties:

• Outputs sum to 1

• Generalizes sigmoid to multiple classes

• Also called multinomial logistic regression

5.3.5 Support Vector Machines
Maximum Margin Classification

Intuition: Find hyperplane that separates classes with maximum margin
Decision Boundary: wTx+ b = 0

Margin: Distance from boundary to nearest point
For linearly separable data:

min
w,b

1

2
∥w∥2

subject to y(i)(wTx(i) + b) ≥ 1 for all i
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Soft Margin SVM

For non-separable data, introduce slack variables ξi:

min
w,b,ξ

1

2
∥w∥2 + C

m∑
i=1

ξi

subject to y(i)(wTx(i) + b) ≥ 1− ξi and ξi ≥ 0

Parameter C:

• Large C: Fewer margin violations (low bias, high variance)

• Small C: More margin violations allowed (high bias, low variance)

The Kernel Trick

Problem: Data not linearly separable in original space
Solution: Map to higher-dimensional space where it is separable
Example: x = (x1, x2) 7→ ϕ(x) = (x21,

√
2x1x2, x

2
2)

Key Insight: We only need dot products ϕ(x)Tϕ(z), not explicit ϕ!
Kernel Function:

K(x, z) = ϕ(x)Tϕ(z)

Popular Kernels:

• Linear: K(x, z) = xT z

• Polynomial: K(x, z) = (xT z+ c)d

• RBF (Gaussian): K(x, z) = exp(−γ∥x− z∥2)

• Sigmoid: K(x, z) = tanh(κxT z+ c)

RBF Kernel Example:

• Maps to infinite-dimensional space!

• γ controls influence of single training example

• Small γ: Far reach (smooth decision boundary)

• Large γ: Close reach (complex decision boundary, can overfit)
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5.4 Tree-Based Methods
5.4.1 Decision Trees
Structure
Components:

• Internal Nodes: Tests on features

• Branches: Outcomes of tests

• Leaf Nodes: Predictions

Learning Algorithm (CART)
Greedy Top-Down Approach:

1. Start with all data at root

2. Find best split (feature + threshold) to maximize information gain

3. Recursively split each child node

4. Stop when: max depth reached, min samples per leaf, or no informa-
tion gain

Splitting Criteria
For Classification - Information Gain:

IG(D,A) = H(D)−
∑

v∈Values(A)

|Dv|
|D|

H(Dv)

where H(D) is entropy:

H(D) = −
K∑

k=1

pk log2 pk

pk is proportion of examples in class k
Gini Impurity:

Gini(D) = 1−
K∑

k=1

p2k

For Regression - Variance Reduction:

Var(D) =
1

|D|
∑
i∈D

(yi − ȳ)2

Split to minimize weighted variance of children.
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Advantages and Disadvantages
Advantages:

• Easy to understand and interpret

• Handles non-linear relationships

• No need for feature scaling

• Handles missing values naturally

• Performs implicit feature selection

Disadvantages:

• High variance (small changes in data → different tree)

• Prone to overfitting

• Greedy algorithm may miss global optimum

• Biased toward features with more levels

5.4.2 Ensemble Methods
Bagging (Bootstrap Aggregating)
Algorithm:

1. Create B bootstrap samples (sample with replacement)

2. Train model on each bootstrap sample

3. Average predictions (regression) or vote (classification)

Why It Works:
Var(X̄) =

σ2

B

Averaging reduces variance without increasing bias!

Random Forest
Extension of Bagging:

• At each split, consider only random subset ofm features (typicallym =√
p for classification)

• Decorrelates trees → further variance reduction

Out-of-Bag (OOB) Error:
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• Each tree trained on 63% of data

• Remaining 37% used for validation

• Provides unbiased estimate without separate validation set

Feature Importance:

• Measure decrease in impurity from splits on each feature

• Average across all trees

• Useful for interpretation and feature selection

Gradient Boosting
Key Idea: Train models sequentially, each correcting errors of previous
ones

Algorithm:

Algorithm 24 Gradient Boosting
1: Initialize F0(x) = argminγ

∑m
i=1 L(yi, γ)

2: for t = 1 to T do
3: Compute residuals: ri = −∂L(yi,Ft−1(xi))

∂Ft−1(xi)

4: Fit weak learner ht to residuals ri
5: Find optimal step size: γt = argminγ

∑
i L(yi, Ft−1(xi) + γht(xi))

6: Update: Ft(x) = Ft−1(x) + νγtht(x)
7: end for
8: return FT (x)

Hyperparameters:

• T : Number of trees (more trees = better fit but slower)

• ν: Learning rate (smaller = more robust but needs more trees)

• Tree depth: Typically shallow trees (3-6 levels)

XGBoost (Extreme Gradient Boosting):

• Adds regularization to prevent overfitting

• Handles sparse data efficiently

• Built-in cross-validation

• Parallelized tree construction

• Dominant algorithm in Kaggle competitions



5.5. UNSUPERVISED LEARNING 131

5.5 Unsupervised Learning
5.5.1 K-Means Clustering
Algorithm

Algorithm 25 K-Means Clustering
1: Initialize K centroids µ1, . . . ,µK randomly
2: repeat
3: ▷ Assignment Step
4: for each data point xi do
5: ci ← argmink ∥xi − µk∥2
6: end for
7: ▷ Update Step
8: for each cluster k do
9: µk ← 1

|Ck|
∑

i∈Ck
xi

10: end for
11: until centroids don’t change or max iterations
12: return centroids µ1, . . . ,µK and assignments c1, . . . , cm

Objective Function

Minimize within-cluster sum of squares:

J =

K∑
k=1

∑
i∈Ck

∥xi − µk∥2

Properties:

• Guaranteed to converge (objective decreases each iteration)

• May converge to local minimum

• Sensitive to initialization → run multiple times

Choosing K

Elbow Method:

• Plot J vs. K

• Look for "elbow" where improvement diminishes

• Subjective, not always clear
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Silhouette Score:
si =

bi − ai
max(ai, bi)

where:

• ai: Average distance to points in same cluster

• bi: Average distance to points in nearest other cluster

• si ∈ [−1, 1]: Higher is better

5.5.2 Principal Component Analysis (PCA)
Goal
Find directions of maximum variance in data.

Mathematical Formulation
Given: Data matrix X ∈ Rm×n (centered: x̄ = 0)

Find: k orthogonal directions w1, . . . ,wk that maximize projected vari-
ance

Covariance Matrix:
Σ =

1

m
XTX

Solution: Principal components are eigenvectors of Σ corresponding to
largest eigenvalues

Algorithm:
1. Center data: X ← X − x̄

2. Compute covariance matrix: Σ = 1
mX

TX

3. Find eigenvectors/eigenvalues: Σvi = λivi

4. Sort eigenvectors by eigenvalues (descending)

5. Keep top k eigenvectors as principal components

6. Project data: Z = XW where W = [v1, . . . ,vk]

Choosing Number of Components
Explained Variance:

Variance Explained =

∑k
i=1 λi∑n
i=1 λi

Common Threshold: Keep components explaining 95% or 99% of vari-
ance
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Applications
• Dimensionality reduction

• Visualization (project to 2D or 3D)

• Noise reduction

• Feature extraction

• Compression

5.6 Problems and Solutions
Warm-up Problems
Exercise 5.1. Train/Test Split Calculation: You have 1,000 examples.
Split 80/20 for train/test. Then use 5-fold CV on training set. How many
examples in:

[label=(a)]

1. Training set?

2. Test set?

3. Each CV fold?

Solution:
[label=(f)]

1. Training set: 1000× 0.8 = 800 examples

2. Test set: 1000× 0.2 = 200 examples

3. Each CV fold: 800
5 = 160 examples

In each CV iteration:

• Validation fold: 160 examples
• Training folds: 800− 160 = 640 examples

■

Exercise 5.2. Confusion Matrix Metrics: Given confusion matrix:

Predicted Positive Predicted Negative
Actual Positive 45 5
Actual Negative 10 40
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Calculate: Accuracy, Precision, Recall, F1 Score.

Solution: Values: TP = 45, FN = 5, FP = 10, TN = 40
Accuracy:

TP + TN

Total
=

45 + 40

100
= 0.85 or 85%

Precision:
TP

TP + FP
=

45

45 + 10
=

45

55
≈ 0.818 or 81.8%

Recall:
TP

TP + FN
=

45

45 + 5
=

45

50
= 0.9 or 90%

F1 Score:
2 · Precision · Recall
Precision + Recall =

2 · 0.818 · 0.9
0.818 + 0.9

=
1.4724

1.718
≈ 0.857 or 85.7%

Interpretation:

• Model correctly identifies 90% of positive cases (high recall)

• When model predicts positive, it’s correct 81.8% of time (good preci-
sion)

• Good balance between precision and recall (F1 = 85.7%)

■

Standard Problems
Exercise 5.3. Linear Regression from Scratch: Given data:

X =


1 1
1 2
1 3
1 4

 , y =


2
4
5
4


Find optimal parameters θ using Normal Equations.

Solution: Formula: θ = (XTX)−1XTy
Step 1: Compute XTX

XT =

[
1 1 1 1
1 2 3 4

]
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XTX =

[
1 1 1 1
1 2 3 4

]
1 1
1 2
1 3
1 4

 =

[
4 10
10 30

]

Step 2: Compute (XTX)−1

Determinant: det(XTX) = 4(30)− 10(10) = 120− 100 = 20

(XTX)−1 =
1

20

[
30 −10
−10 4

]
=

[
1.5 −0.5
−0.5 0.2

]
Step 3: Compute XTy

XTy =

[
1 1 1 1
1 2 3 4

]
2
4
5
4

 =

[
15
38

]

Step 4: Compute θ

θ =

[
1.5 −0.5
−0.5 0.2

] [
15
38

]
=

[
1.5(15)− 0.5(38)
−0.5(15) + 0.2(38)

]
=

[
22.5− 19
−7.5 + 7.6

]
=

[
3.5
0.1

]
Model: ŷ = 3.5 + 0.1x
Predictions:

• x = 1: ŷ = 3.5 + 0.1(1) = 3.6 (actual: 2)

• x = 2: ŷ = 3.5 + 0.1(2) = 3.7 (actual: 4)

• x = 3: ŷ = 3.5 + 0.1(3) = 3.8 (actual: 5)

• x = 4: ŷ = 3.5 + 0.1(4) = 3.9 (actual: 4)

MSE:

MSE =
1

4
[(2−3.6)2+(4−3.7)2+(5−3.8)2+(4−3.9)2] = 1

4
[2.56+0.09+1.44+0.01] = 1.025

■

Exercise 5.4. Decision Tree Information Gain: Parent node contains:
10 positives, 10 negatives.

Consider split on feature A:

• Left child: 8 positives, 2 negatives

• Right child: 2 positives, 8 negatives

Calculate Information Gain.
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Solution: Formula: IG = H(Parent)−Weighted Average(H(Children))
Step 1: Parent Entropy

H(Parent) = −10

20
log2

10

20
− 10

20
log2

10

20
= −0.5 log2(0.5)− 0.5 log2(0.5) = 1

Step 2: Left Child Entropy

H(Left) = − 8

10
log2

8

10
− 2

10
log2

2

10

= −0.8 log2(0.8)− 0.2 log2(0.2)

= −0.8(−0.322)− 0.2(−2.322) = 0.258 + 0.464 = 0.722

Step 3: Right Child Entropy By symmetry (80

H(Right) = 0.722

Step 4: Weighted Average

Weighted =
10

20
(0.722) +

10

20
(0.722) = 0.722

Step 5: Information Gain

IG = 1− 0.722 = 0.278 bits

Interpretation: This split reduces uncertainty by 0.278 bits (or 27.8%
of maximum entropy). ■

Advanced Problems
Exercise 5.5. Bias-Variance Decomposition: Provide a complete deriva-
tion of the bias-variance decomposition for squared error. Clearly state all
assumptions.

Solution: Setup:

• True relationship: y = f(x) + ϵ where E[ϵ] = 0, Var(ϵ) = σ2

• Learned model: f̂(x) (random variable depending on training data)

• Goal: Decompose E[(y − f̂(x))2]

Derivation:
Expected prediction error at point x:

E[(y − f̂(x))2] = E[(f(x) + ϵ− f̂(x))2]
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Add and subtract E[f̂(x)]:

= E[(f(x)− E[f̂(x)] + E[f̂(x)]− f̂(x) + ϵ)2]

Let Bias = f(x)− E[f̂(x)] and expand:

= E[(Bias + (E[f̂(x)]− f̂(x)) + ϵ)2]

= E[Bias2 + (E[f̂(x)]− f̂(x))2 + ϵ2

+ 2Bias(E[f̂(x)]− f̂(x))
+ 2Bias · ϵ
+ 2(E[f̂(x)]− f̂(x))ϵ]

Simplify cross terms:
Term 1: E[Bias2] = Bias2 (constant w.r.t. expectation)
Term 2: E[(E[f̂(x)]− f̂(x))2] = Var(f̂(x))
Term 3: E[ϵ2] = σ2

Term 4: E[2Bias(E[f̂(x)]− f̂(x))]

= 2Bias · E[E[f̂(x)]− f̂(x)] = 2Bias · 0 = 0

Term 5: E[2Bias · ϵ] = 2Bias · E[ϵ] = 0

Term 6: E[2(E[f̂(x)]− f̂(x))ϵ]

= 2E[E[f̂(x)]− f̂(x)] · E[ϵ] = 0

Final Result:

E[(y − f̂(x))2] = (f(x)− E[f̂(x)])2︸ ︷︷ ︸
Bias2

+Var(f̂(x))︸ ︷︷ ︸
Variance

+ σ2︸︷︷︸
Irreducible Error

Interpretation:

• Bias2: Error from wrong assumptions in model

• Variance: Error from sensitivity to training set

• Irreducible Error: Noise in data, cannot be reduced

■

Exercise 5.6. K-Means Complexity:
[label=(f)]

1. Analyze the time complexity of one iteration of K-Means with m data
points, K clusters, n features, and I iterations.
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2. Show that K-Means monotonically decreases the objective function.

3. Why might K-Means fail to find the global optimum?

Solution:
[label=(f)]

1. Time Complexity Analysis:
Assignment Step:

• For each of m data points
• Compute distance to each of K centroids
• Distance computation: O(n) (comparing n features)
• Total: O(m ·K · n)

Update Step:

• For each of K clusters
• Average all points in cluster: O(n) per point
• Total: O(m · n) (each point considered once)

Per Iteration: O(m ·K · n) dominates
Overall: O(I ·m ·K · n) for I iterations
Space Complexity: O(m · n+K · n) for storing data and centroids

2. Monotonic Decrease of Objective:
Objective function:

J =

K∑
k=1

∑
i∈Ck

∥xi − µk∥2

After Assignment Step: Each point assigned to nearest centroid, so
distance (and thus J) cannot increase.
Proof: Let cold

i be old assignment, cnew
i be new assignment.

∥xi − µcnew
i
∥ ≤ ∥xi − µcold

i
∥

by definition of nearest centroid.
After Update Step: New centroid is mean of assigned points, which
minimizes sum of squared distances.
Proof: For cluster Ck, optimal centroid satisfies:

∂

∂µk

∑
i∈Ck

∥xi − µk∥2 = −2
∑
i∈Ck

(xi − µk) = 0
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µk =
1

|Ck|
∑
i∈Ck

xi

Since both steps decrease (or maintain) J , overall J decreases mono-
tonically.
Convergence: Since J ≥ 0 and decreases each iteration, algorithm
must converge.

3. Why K-Means Fails to Find Global Optimum:
Reason 1: Greedy Algorithm

• Makes locally optimal decisions at each step
• No backtracking or exploration of alternatives
• Can get stuck in local minima

Reason 2: Initialization Dependence

• Random initialization can lead to poor starting points
• Different initializations → different local optima

Example: Consider 3 points at (0, 0), (1, 0), (5, 0) with K = 2.

• Good init: µ1 = (0.5, 0), µ2 = (5, 0) → clusters {(0, 0), (1, 0)} and
{(5, 0)}

• Bad init: µ1 = (0, 0), µ2 = (1, 0)→ clusters {(0, 0)} and {(1, 0), (5, 0)}
(suboptimal)

Solutions:

• Run K-Means multiple times with different initializations, keep
best result

• Use K-Means++ initialization (smarter centroid selection)
• Try different values of K

■

5.7 Conclusion
Machine learning provides powerful tools for learning patterns from data
without explicit programming. The field encompasses supervised learning
(classification and regression), unsupervised learning (clustering and di-
mensionality reduction), and reinforcement learning (sequential decision
making).

Key Takeaways:



140 CHAPTER 5. MACHINE LEARNING

1. Bias-variance tradeoff is fundamental: simple models underfit, com-
plex models overfit

2. Regularization and cross-validation are essential for good generaliza-
tion

3. Linear models are interpretable and efficient but limited to linear re-
lationships

4. Tree-based ensembles (Random Forests, Gradient Boosting) often achieve
state-of-the-art performance

5. Proper evaluation metrics are crucial, especially for imbalanced datasets

6. No Free Lunch: No single algorithm dominates across all problems

The next frontier involves combining these classical methods with deep
learning, creating hybrid models that leverage both statistical rigor and
representation learning.



Chapter 6

Neural Networks and
Deep Learning

6.1 Introduction and Historical Context
6.1.1 The Journey from Perceptrons to Deep Learning
1943: McCulloch-Pitts Neuron

• First mathematical model of biological neuron

• Binary threshold units

• Could compute basic logical functions (AND, OR)

1958: Rosenblatt’s Perceptron

• First learning algorithm

• Perceptron learning rule: adjust weights based on errors

• Great excitement: "embryo of an electronic computer that [the Navy]
expects will be able to walk, talk, see, write, reproduce itself and be
conscious of its existence"

1969: First AI Winter

• Minsky Papert: "Perceptrons" book

• Showed single-layer perceptrons cannot solve XOR

• Funding dried up, research stagnated

1986: Renaissance via Backpropagation

• Rumelhart, Hinton, Williams popularize backpropagation

141
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• Multi-layer networks can learn XOR and complex patterns

• Could train deep networks (in theory)

2006-2012: Deep Learning Revolution

• Hinton et al.: Layer-wise pre-training

• 2012: AlexNet wins ImageNet by huge margin

• Driven by: Big Data, GPUs, algorithmic innovations (ReLU, Dropout,
Batch Norm)

6.1.2 Why "Deep" Learning?
Representational Power: Deep networks can represent complex func-
tions exponentially more efficiently than shallow networks.

Hierarchical Feature Learning:
• Layer 1: Edges, corners

• Layer 2: Textures, patterns

• Layer 3: Parts (eyes, wheels)

• Layer 4: Objects (faces, cars)

Universal Approximation Theorem: A neural network with a single
hidden layer and sufficient neurons can approximate any continuous func-
tion.

BUT: Width required may be exponential; depth allows much more effi-
cient representation.

6.2 Feedforward Neural Networks
6.2.1 Single Neuron
Mathematical Model:

y = f

(
n∑

i=1

wixi + b

)
= f(wTx+ b)

where:

• x ∈ Rn: Input features

• w ∈ Rn: Weights

• b ∈ R: Bias

• f : Activation function
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6.2.2 Activation Functions
Sigmoid

σ(z) =
1

1 + e−z

Properties:

• Output range: (0, 1)

• Smooth, differentiable

• Derivative: σ′(z) = σ(z)(1− σ(z))

Problems:

• Vanishing Gradients: For large |z|, σ′(z) ≈ 0

• Not Zero-Centered: Always positive outputs

• Slow: Exponential computation

Hyperbolic Tangent (tanh)

tanh(z) =
ez − e−z

ez + e−z
=
e2z − 1

e2z + 1

Properties:

• Output range: (−1, 1)

• Zero-centered (better than sigmoid)

• Derivative: tanh′(z) = 1− tanh2(z)

Relation to Sigmoid: tanh(z) = 2σ(2z)− 1
Still suffers from vanishing gradients for large |z|

Rectified Linear Unit (ReLU)

f(z) = max(0, z) =

{
z if z > 0

0 if z ≤ 0

Properties:

• Simple, fast to compute

• Does not saturate for positive values

• Sparse activation (roughly 50% of neurons are zero)
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Derivative:

f ′(z) =


1 if z > 0

0 if z < 0

undefined if z = 0

In practice, set f ′(0) = 0 or f ′(0) = 1.
Problem: Dying ReLU
• If neuron outputs negative value, gradient is zero
• Neuron can "die" (never activate again)
• Can happen with large learning rates

Leaky ReLU

f(z) =

{
z if z > 0

αz if z ≤ 0

where α is small positive constant (e.g., 0.01).
Advantage: Allows small gradient when z < 0, preventing dying neu-

rons.

Parametric ReLU (PReLU)
Same as Leaky ReLU, but α is learned parameter.

Exponential Linear Unit (ELU)

f(z) =

{
z if z > 0

α(ez − 1) if z ≤ 0

Advantages:
• Smooth everywhere
• Negative values push mean activation closer to zero
• Better than ReLU in some cases
Disadvantage: More expensive to compute (exponential).

Swish / SiLU
f(z) = z · σ(z) = z

1 + e−z

Properties:
• Smooth, non-monotonic
• Self-gated
• Outperforms ReLU on deeper models
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6.2.3 Multi-Layer Perceptron (MLP)
Architecture:

z(1) = W(1)x+ b(1)

a(1) = f(z(1))

z(2) = W(2)a(1) + b(2)

a(2) = f(z(2))

...
y = W(L)a(L−1) + b(L)

Notation:

• W(l) ∈ Rnl×nl−1 : Weight matrix for layer l

• b(l) ∈ Rnl : Bias vector for layer l

• a(l) ∈ Rnl : Activations at layer l

• z(l) ∈ Rnl : Pre-activation values at layer l

6.2.4 Backpropagation
Core Idea: Efficiently compute gradients using chain rule.

Forward Pass
Store all intermediate values z(l) and a(l) for each layer.

Loss Functions
For Regression: Mean Squared Error

L =
1

2m

m∑
i=1

∥y(i) − ŷ(i)∥2

For Binary Classification: Binary Cross-Entropy

L = − 1

m

m∑
i=1

[y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))]

For Multi-Class Classification: Categorical Cross-Entropy

L = − 1

m

m∑
i=1

K∑
k=1

y
(i)
k log ŷ

(i)
k
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where ŷ is output of softmax:

ŷk =
ezk∑K
j=1 e

zj

Backward Pass
Output Layer Gradient:

δ(L) =
∂L

∂z(L)

For MSE with linear output: δ(L) = ŷ − y
For cross-entropy with softmax: δ(L) = ŷ − y (remarkably simple!)
Hidden Layer Gradients (Backpropagation):

δ(l) = (W(l+1))T δ(l+1) ⊙ f ′(z(l))

where ⊙ is element-wise multiplication.
Weight and Bias Gradients:

∂L

∂W(l)
= δ(l)(a(l−1))T

∂L

∂b(l)
= δ(l)

Algorithm

Algorithm 26 Backpropagation
1: Input: Training example (x,y), network parameters W(l),b(l)

2: ▷ Forward Pass
3: a(0) ← x
4: for l = 1 to L do
5: z(l) ←W(l)a(l−1) + b(l)

6: a(l) ← f(z(l))
7: end for
8: Compute loss L(a(L),y)
9: ▷ Backward Pass

10: δ(L) ← ∂L
∂z(L)

11: for l = L− 1 down to 1 do
12: δ(l) ← (W(l+1))T δ(l+1) ⊙ f ′(z(l))
13: end for
14: ▷ Compute Gradients
15: for l = 1 to L do
16: ∂L

∂W(l) ← δ(l)(a(l−1))T

17: ∂L
∂b(l) ← δ(l)

18: end for
19: return gradients
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6.2.5 Training Techniques
Optimization Algorithms
Stochastic Gradient Descent (SGD):

θt+1 = θt − α∇Li(θt)

SGD with Momentum:

vt+1 = βvt + (1− β)∇L(θt)
θt+1 = θt − αvt+1

Intuition: Accumulates velocity in directions of persistent reduction.
RMSProp:

st+1 = βst + (1− β)(∇L(θt))2

θt+1 = θt −
α√

st+1 + ϵ
∇L(θt)

Intuition: Adapts learning rate for each parameter based on recent
gradient magnitudes.

Adam (Adaptive Moment Estimation):

mt+1 = β1mt + (1− β1)∇L(θt)
vt+1 = β2vt + (1− β2)(∇L(θt))2

m̂ =
mt+1

1− βt
1

(bias correction)

v̂ =
vt+1

1− βt
2

θt+1 = θt −
α√
v̂ + ϵ

m̂

Typical Values: β1 = 0.9, β2 = 0.999, ϵ = 10−8, α = 0.001
Why Adam Works:

• Combines momentum and adaptive learning rates

• Works well with sparse gradients

• Less sensitive to hyperparameters than SGD

Learning Rate Schedules
Step Decay:

αt = α0 · γ⌊t/k⌋

Reduce learning rate by factor γ every k epochs.
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Exponential Decay:
αt = α0e

−λt

1/t Decay:
αt =

α0

1 + λt

Cosine Annealing:

αt = αmin +
1

2
(αmax − αmin)

(
1 + cos

(
Tcur
Tmax

π

))
Warm Restarts: Periodically reset learning rate to initial value.

Regularization
L2 Weight Decay:

Ltotal = L+
λ

2

∑
l

∥W(l)∥2F

Effect: Penalizes large weights, encourages simpler models.
Dropout:
• During training: Randomly set neurons to 0 with probability p (typi-

cally 0.5)

• During testing: Use all neurons, scale activations by (1− p)

Why It Works:
• Prevents co-adaptation of features

• Equivalent to training ensemble of 2n networks

• Acts as strong regularizer
Implementation:

1 def dropout_forward(x, dropout_prob , train=True):
2 if not train:
3 return x
4 mask = (np.random.rand(*x.shape) > dropout_prob) / (1 -

dropout_prob)
5 return x * mask

Batch Normalization:

x̂i =
xi − µB√
σ2
B + ϵ

yi = γx̂i + β

where µB and σ2
B are mean and variance of mini-batch, γ and β are

learnable parameters.
Benefits:
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• Reduces internal covariate shift

• Allows higher learning rates

• Acts as regularization

• Reduces dependence on initialization

Early Stopping:

• Monitor validation loss during training

• Stop when validation loss stops improving

• Save model with best validation performance

Data Augmentation:

• Artificially expand training set

• For images: rotation, flipping, cropping, color jittering, mixup

• Provides implicit regularization

6.3 Convolutional Neural Networks (CNNs)
6.3.1 Motivation
Problems with Fully Connected Networks for Images:

• Too many parameters: 32 × 32 × 3 image → 3,072 parameters per
neuron

• No spatial structure exploitation

• Not translation invariant

Key Ideas:

• Local Connectivity: Neurons connect only to small regions

• Parameter Sharing: Same weights used across image

• Spatial Hierarchy: Build up from simple to complex features



150 CHAPTER 6. NEURAL NETWORKS AND DEEP LEARNING

6.3.2 Convolutional Layer
The Convolution Operation

1D Convolution:

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g[n−m]

2D Discrete Convolution:

(I ∗K)[i, j] =
∑
m

∑
n

I[i+m, j + n]K[m,n]

In Practice (Cross-Correlation):

(I ∗K)[i, j] =
∑
m

∑
n

I[i−m, j − n]K[m,n]

Parameters:

• Filter/Kernel Size: Typical values: 3× 3, 5× 5, 7× 7

• Stride: Step size when sliding filter (typically 1 or 2)

• Padding: Add zeros around border

– Valid: No padding, output size shrinks
– Same: Pad to keep output size same as input
– Full: Maximum padding

Output Size:

Output Size =

⌊
n+ 2p− f

s

⌋
+ 1

where n = input size, p = padding, f = filter size, s = stride.
Example:

• Input: 32× 32

• Filter: 5× 5, stride 1, padding 2

• Output:
⌊
32+2(2)−5

1

⌋
+ 1 = 32× 32
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Multiple Filters

Apply K different filters to produce K feature maps (channels).
Parameters per layer:

Params = (filter height× filter width× input channels + 1)× num filters

Example:

• Input: 32× 32× 3 (RGB image)

• 64 filters of size 3× 3

• Parameters: (3× 3× 3 + 1)× 64 = 1, 792

• Compare to fully connected: 32× 32× 3× 64 = 196, 608 parameters!

6.3.3 Pooling Layer
Purpose: Reduce spatial dimensions, increase receptive field, provide trans-
lation invariance.

Max Pooling

Take maximum value in each pooling window.
Example: 2× 2 max pooling with stride 2

Input: Output:
[1 2 3 4] [6 8]
[5 6 7 8] [12 14]
[9 10 11 12]
[13 14 15 16]

Properties:

• No parameters to learn

• Provides exact translation invariance within pooling window

• Most commonly used pooling method

Average Pooling

Take average value in each window. Gentler downsampling than max pool-
ing.
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6.3.4 Classic CNN Architectures
LeNet-5 (1998)
Architecture:

Input (32×32) → Conv(6@28×28) → Pool(6@14×14) →
Conv(16@10×10) → Pool(16@5×5) → FC(120) → FC(84) → Output(10)

Significance: First successful CNN, used for digit recognition (MNIST,
zip codes).

AlexNet (2012)
Architecture:

Input (224×224×3) →
Conv1 (96@55×55, 11×11 filter, stride 4) → MaxPool →
Conv2 (256@27×27, 5×5) → MaxPool →
Conv3 (384@13×13, 3×3) →
Conv4 (384@13×13, 3×3) →
Conv5 (256@13×13, 3×3) → MaxPool →
FC (4096) → Dropout →
FC (4096) → Dropout →
FC (1000)

Key Innovations:

• ReLU activations (much faster than tanh)

• Dropout for regularization

• Data augmentation

• Trained on 2 GPUs

Impact: Won ImageNet 2012 with 15.3% error (vs. 26.2% runner-up).
Sparked deep learning revolution.

VGGNet (2014)
Key Idea: Stack many small (3× 3) convolutional layers.

VGG-16 Architecture:

• 13 conv layers (all 3× 3)

• 5 max pooling layers

• 3 fully connected layers

• 138M parameters
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Why small filters?
• Two 3× 3 conv layers have same receptive field as one 5× 5

• But fewer parameters: 2(32C2) < 52C2

• More non-linearity (more ReLU activations)

GoogLeNet / Inception (2014)
Key Idea: Inception module applies multiple filter sizes in parallel.

Inception Module:
Input

1×1 conv
1×1 conv → 3×3 conv
1×1 conv → 5×5 conv → Concatenate → Output
3×3 max pool → 1×1 conv

Benefits:
• Network can choose which filter sizes are useful

• 1× 1 convolutions reduce dimensionality (computational efficiency)

• 22 layers but only 5M parameters (vs. 138M for VGG)

ResNet (2015)
Problem: Very deep networks (>20 layers) degrade in performance even
on training set (not overfitting—optimization problem).

Solution: Residual connections (skip connections).
Residual Block:

y = F (x, {Wi}) + x

where F is the learned residual mapping.
Architecture:

x
|

[Conv]
[BN]
[ReLU]
[Conv]
[BN]

|
[Add] ← x (skip connection)
[ReLU]

|
y
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Why It Works:

• Easier to learn identity mapping (set F (x) = 0)

• Gradients flow directly through skip connections

• Enables training of very deep networks (50, 101, 152 layers)

ResNet-50: 25.6M parameters, top-5 error 5.25% on ImageNet.

6.4 Recurrent Neural Networks (RNNs)
6.4.1 Motivation
Sequential Data:

• Text: "The cat sat on the
”ßneedtoremember”cat”topredict”mat”

• Speech: Current phoneme depends on previous phonemes

• Time series: Stock prices, weather patterns

• Video: Sequence of frames

Feedforward networks: Fixed-size input/output, no memory.
RNNs: Process sequences of arbitrary length with memory.

6.4.2 Vanilla RNN
Architecture:

ht = tanh(Whhht−1 +Wxhxt + bh)

yt = Whyht + by

Unfolded in Time:

x_0 → [RNN] → h_0 → y_0
↓

x_1 → [RNN] → h_1 → y_1
↓

x_2 → [RNN] → h_2 → y_2

Key Point: Same weights Whh,Wxh,Why used at all time steps.
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6.4.3 Backpropagation Through Time (BPTT)
Unfold RNN into deep feedforward network.

Loss:

L =

T∑
t=1

Lt(yt, ŷt)

Gradients:
∂L

∂Whh
=

T∑
t=1

∂Lt

∂Whh

Problem: Vanishing/Exploding Gradients
Gradient through time:

∂ht

∂hk
=

t∏
i=k+1

∂hi

∂hi−1
=

t∏
i=k+1

WT
hhdiag(f ′(zi))

If largest eigenvalue of Whh:

• > 1: Gradients explode exponentially

• < 1: Gradients vanish exponentially

Consequence: Vanilla RNNs cannot learn long-term dependencies (>10-
20 time steps).

6.4.4 Long Short-Term Memory (LSTM)
Key Idea: Add gating mechanisms to control information flow.

LSTM Cell

Components:

• Cell state ct: Long-term memory

• Hidden state ht: Short-term memory / output

• Forget gate ft: What to forget from cell state

• Input gate it: What new information to add

• Output gate ot: What to output
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Equations:

ft = σ(Wf [ht−1,xt] + bf ) (forget gate)
it = σ(Wi[ht−1,xt] + bi) (input gate)
c̃t = tanh(Wc[ht−1,xt] + bc) (candidate values)
ct = ft ⊙ ct−1 + it ⊙ c̃t (update cell state)
ot = σ(Wo[ht−1,xt] + bo) (output gate)
ht = ot ⊙ tanh(ct) (hidden state)

Why It Works:

• Cell state provides highway for gradients to flow unchanged

• Gates are differentiable, learned from data

• Can selectively remember/forget information over long periods

Gradient Flow:
∂ct
∂ct−1

= ft

If forget gate is close to 1, gradient flows unimpeded!

6.4.5 Gated Recurrent Unit (GRU)
Simpler alternative to LSTM with fewer parameters.

Equations:

zt = σ(Wz[ht−1,xt]) (update gate)
rt = σ(Wr[ht−1,xt]) (reset gate)
h̃t = tanh(W[rt ⊙ ht−1,xt]) (candidate)
ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

Differences from LSTM:

• No separate cell state

• Only 2 gates instead of 3

• About 25% fewer parameters

• Often similar performance to LSTM
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6.4.6 Bidirectional RNNs
Idea: Process sequence in both directions.

Forward RNN: −→h t depends on x1, . . . , xt

Backward RNN:←−h t depends on xT , . . . , xt

Output: ht = [
−→
h t;
←−
h t] (concatenate)

Use Cases:

• Named entity recognition

• Machine translation (encoder)

• Speech recognition

Limitation: Cannot be used for online/causal predictions (need entire
sequence).

6.5 Advanced Topics
6.5.1 Attention Mechanisms
Problem with RNNs for Sequence-to-Sequence:

• Encoder must compress entire input into fixed-size context vector

• Information bottleneck for long sequences

Solution: Attention
Allow decoder to "attend" to different parts of input at each step.
Attention Score:

eij = a(hi, sj)

where hi is encoder hidden state, sj is decoder hidden state.
Attention Weights:

αij =
exp(eij)∑
k exp(ekj)

Context Vector:
cj =

∑
i

αijhi

Decoder:
sj = f(sj−1,yj−1, cj)
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6.5.2 Autoencoders
Goal: Learn compressed representation of data.

Architecture:

Input → Encoder → Latent Code (bottleneck) → Decoder → Output

Training: Minimize reconstruction error

L = ∥x− x̂∥2

Latent code z is lower-dimensional representation of x.
Applications:

• Dimensionality reduction (like PCA, but non-linear)

• Denoising

• Feature learning

• Anomaly detection

Variational Autoencoders (VAEs):

• Probabilistic formulation

• Learn distribution p(z|x) and p(x|z)

• Can generate new samples by sampling from p(z)

6.5.3 Generative Adversarial Networks (GANs)
Idea: Two networks compete in a game.

Generator G: Creates fake data from random noise

xfake = G(z)

Discriminator D: Distinguishes real from fake

D(x) ∈ [0, 1] (probability x is real)

Minimax Objective:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz
[log(1−D(G(z)))]

Training:

1. Train D to maximize discrimination (classify real vs. fake)

2. Train G to fool D (make fake look real)

3. Iterate
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Applications:
• Image generation (faces, artwork)

• Image-to-image translation

• Super-resolution

• Data augmentation
Challenges:
• Training instability

• Mode collapse (generator produces limited variety)

• Difficult to evaluate quality

6.6 Problems and Solutions
Standard Problems
Exercise 6.1. Activation Function Derivatives: Compute derivatives
for:

[label=(a)]

1. Sigmoid: σ(z) = 1
1+e−z

2. ReLU: f(z) = max(0, z)

3. Leaky ReLU: f(z) = max(αz, z) where α = 0.01

Solution:
[label=(f)]

1. Sigmoid Derivative:

σ′(z) =
d

dz

(
1

1 + e−z

)
=

0 · (1 + e−z)− 1 · (−e−z)

(1 + e−z)2

=
e−z

(1 + e−z)2

=
1

1 + e−z
· e−z

1 + e−z

= σ(z) · 1 + e−z − 1

1 + e−z

= σ(z) · (1− σ(z))
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Result: σ′(z) = σ(z)(1− σ(z))
Note: Maximum value is 0.25 at z = 0. For |z| > 5, derivative < 0.01
(vanishing gradient).

2. ReLU Derivative:

f ′(z) =


1 if z > 0

0 if z < 0

undefined if z = 0

In practice, set f ′(0) = 0 or f ′(0) = 1 (arbitrary choice, rarely matters).
Advantage: No vanishing gradient for positive values!

3. Leaky ReLU Derivative:

f ′(z) =

{
1 if z > 0

α if z < 0

where α = 0.01.
Advantage: Non-zero gradient everywhere (prevents dying neurons).

■

Exercise 6.2. CNN Output Size Calculation: Given input image 224 ×
224× 3:

[label=(b)]

1. Apply conv layer with 64 filters of size 7×7, stride 2, padding 3. What’s
output size?

2. Then apply max pooling with 3 × 3 window, stride 2. What’s output
size?

3. How many parameters in the conv layer?

Solution:
[label=(f)]

1. After Convolution:
Formula: Output Size =

⌊
n+2p−f

s

⌋
+ 1

• Input: n = 224

• Filter size: f = 7

• Stride: s = 2
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• Padding: p = 3

Height = Width =

⌊
224 + 2(3)− 7

2

⌋
+ 1 =

⌊
223

2

⌋
+ 1 = 111 + 1 = 112

Output: 112× 112× 64

2. After Max Pooling:

• Input: n = 112

• Pool size: f = 3

• Stride: s = 2

• Padding: p = 0 (typically no padding for pooling)

Output Size =

⌊
112 + 0− 3

2

⌋
+ 1 =

⌊
109

2

⌋
+ 1 = 54 + 1 = 55

Output: 55× 55× 64

3. Parameters in Conv Layer:

Params = (filter height×filter width×input channels+1)×num filters

= (7× 7× 3 + 1)× 64 = (147 + 1)× 64 = 148× 64 = 9, 472

Breakdown:

• Weights: 7× 7× 3× 64 = 9, 408

• Biases: 64
• Total: 9, 472 parameters

■

Advanced Problems
Exercise 6.3. Backpropagation Through Softmax and Cross-Entropy:
Show that for softmax output with cross-entropy loss, the gradient simpli-
fies to ŷ − y.

Setup:

• Logits: z = [z1, . . . , zK ]
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• Softmax: ŷi = ezi∑
j ezj

• True label: y (one-hot vector)

• Loss: L = −
∑

k yk log ŷk

Compute: ∂L
∂zi

Solution: Step 1: Derivative of Loss w.r.t. Softmax Outputs

∂L

∂ŷi
= −yi

ŷi

Step 2: Derivative of Softmax
For i = j:

∂ŷi
∂zi

=
∂

∂zi

(
ezi∑
k e

zk

)
=
ezi
∑

k e
zk − eziezi

(
∑

k e
zk)2

=
ezi∑
k e

zk
·
∑

k e
zk − ezi∑
k e

zk

= ŷi(1− ŷi)

For i ̸= j:

∂ŷi
∂zj

=
0 ·
∑

k e
zk − ezi · ezj

(
∑

k e
zk)2

= − ezi∑
k e

zk
· ezj∑

k e
zk

= −ŷiŷj

Step 3: Chain Rule
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∂L

∂zi
=
∑
k

∂L

∂ŷk

∂ŷk
∂zi

=
∂L

∂ŷi

∂ŷi
∂zi

+
∑
k ̸=i

∂L

∂ŷk

∂ŷk
∂zi

= −yi
ŷi
· ŷi(1− ŷi) +

∑
k ̸=i

(
−yk
ŷk

)
· (−ŷkŷi)

= −yi(1− ŷi) +
∑
k ̸=i

ykŷi

= −yi + yiŷi + ŷi
∑
k ̸=i

yk

= −yi + ŷi

yi +∑
k ̸=i

yk


= −yi + ŷi · 1 (since

∑
k

yk = 1)

= ŷi − yi

Result: ∂L

∂zi
= ŷi − yi

In vector form: ∇zL = ŷ − y
Interpretation: The gradient is simply the difference between predic-

tion and truth! This elegant result makes backpropagation very efficient
for classification. ■

Exercise 6.4. Receptive Field Calculation: Consider a CNN with the
following layers:

1. Conv: 3× 3 kernel, stride 1

2. Conv: 3× 3 kernel, stride 1

3. Max Pool: 2× 2, stride 2

4. Conv: 3× 3 kernel, stride 1

Calculate the receptive field of a single neuron in the output of layer 4.

Solution: Receptive Field: Region in input that affects a given output
neuron.

Recursive Formula:

rout = rin + (k − 1)× sprev layers
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where k is kernel size.
Layer-by-Layer:
Layer 1 (Conv 3× 3, stride 1):

• Receptive field: 3× 3

• Effective stride: 1

Layer 2 (Conv 3× 3, stride 1):

• Each neuron sees 3× 3 from layer 1

• Each layer 1 neuron sees 3× 3 from input

• Total receptive field: 3 + (3− 1)× 1 = 5× 5

• Effective stride: 1× 1 = 1

Layer 3 (Max Pool 2× 2, stride 2):

• Each neuron sees 2× 2 from layer 2

• Receptive field: 5 + (2− 1)× 1 = 6× 6

• Effective stride: 1× 2 = 2

Layer 4 (Conv 3× 3, stride 1):

• Each neuron sees 3× 3 from layer 3

• Receptive field: 6 + (3− 1)× 2 = 6 + 4 = 10× 10

Answer: A neuron in layer 4 has receptive field of 10× 10 in the input
image.

General Formula:
For layer l:

rl = rl−1 + (kl − 1)×
l−1∏
i=1

si

where kl is kernel size and si are strides of previous layers.
Verification:

r1 = 1 + (3− 1)× 1 = 3

r2 = 3 + (3− 1)× 1 = 5

r3 = 5 + (2− 1)× 1 = 6

r4 = 6 + (3− 1)× (1× 2) = 10 ✓

■
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6.7 Conclusion
Deep learning has revolutionized artificial intelligence through neural net-
works with multiple layers capable of learning hierarchical representations.
Key innovations include:

Architectural:

• CNNs for spatial data with convolution and pooling

• RNNs/LSTMs/GRUs for sequential data with memory

• Residual connections enabling very deep networks

• Attention mechanisms for flexible information routing

Algorithmic:

• Backpropagation with efficient automatic differentiation

• Adaptive optimizers (Adam) for faster convergence

• Regularization techniques (dropout, batch norm) for better general-
ization

Practical:

• Massive datasets and computational power (GPUs)

• Transfer learning and pre-training

• Open-source frameworks (TensorFlow, PyTorch)

The field continues to evolve rapidly with transformers, diffusion models,
and neural-symbolic approaches pushing the boundaries of what’s possible.



Chapter 7

Natural Language
Processing

7.1 Introduction to Natural Language Process-
ing

7.1.1 What is Natural Language Processing?
Natural Language Processing (NLP) is the field of AI concerned with en-
abling computers to understand, interpret, and generate human language.
Unlike formal languages (programming, mathematics), natural language
is:

• Ambiguous: "I saw her duck" (bird or action?)

• Context-Dependent: "That’s cool" (temperature or approval?)

• Compositional: Meaning built from parts

• Evolving: New words, slang, usage patterns

• Nuanced: Sarcasm, implication, pragmatics

7.1.2 Historical Evolution
1950s-1960s: Rule-Based Systems

• ELIZA (1966): Pattern matching chatbot

• Hand-crafted grammars and lexicons

• Brittle, difficult to scale

166
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1970s-1990s: Statistical Methods

• N-gram models for language modeling

• Hidden Markov Models for part-of-speech tagging

• Probabilistic context-free grammars

2000s-2010s: Machine Learning Era

• Feature engineering + classifiers (SVM, MaxEnt)

• Word2Vec (2013): Dense word embeddings

• RNNs and LSTMs for sequence modeling

2017-Present: Deep Learning Revolution

• Transformers: "Attention Is All You Need" (2017)

• BERT (2018): Bidirectional pre-training

• GPT series (2018-2023): Autoregressive language models

• ChatGPT (2022): Conversational AI

• LLMs with 100B+ parameters

7.1.3 Core NLP Tasks
• Tokenization: Splitting text into words/subwords

• Part-of-Speech Tagging: Labeling words (noun, verb, etc.)

• Named Entity Recognition: Identifying people, places, organiza-
tions

• Parsing: Analyzing grammatical structure

• Sentiment Analysis: Determining emotional tone

• Machine Translation: Converting between languages

• Question Answering: Answering questions from text

• Text Generation: Producing coherent text

• Summarization: Creating concise summaries
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7.2 Text Representation
7.2.1 Traditional Approaches
Bag of Words (BoW)
Represent document as multiset of words, ignoring grammar and order.

Example:
• Doc 1: "the cat sat on the mat"

• Doc 2: "the dog sat on the log"

Vocabulary: {the, cat, dog, sat, on, mat, log}
Vectors:
• Doc 1: [2, 1, 0, 1, 1, 1, 0]

• Doc 2: [2, 0, 1, 1, 1, 0, 1]

Problems:
• No word order information

• No semantic similarity (cat vs. dog)

• High dimensionality

• Sparse vectors

TF-IDF
Term Frequency:

TF(t, d) = count of term t in doc d
total terms in d

Inverse Document Frequency:

IDF(t) = log
total documents

documents containing t

TF-IDF:
TF-IDF(t, d) = TF(t, d)× IDF(t)

Intuition: Upweight terms that are frequent in document but rare across
corpus.

7.2.2 Word Embeddings
Key Idea: Represent words as dense vectors in continuous space where
semantic similarity corresponds to geometric proximity.
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Word2Vec
Two Architectures:

1. Continuous Bag of Words (CBOW): Predict word from context
2. Skip-Gram: Predict context from word
Skip-Gram Model:
Objective: Maximize probability of context words given center word

J(θ) =
1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

logP (wt+j |wt)

where c is context window size.
Probability (Softmax):

P (wO|wI) =
exp(vT

wO
vwI

)∑W
w=1 exp(v

T
wvwI

)

Problem: Softmax over entire vocabulary is expensive!
Solutions:
• Hierarchical Softmax: Use tree structure,O(logW ) instead ofO(W )

• Negative Sampling: Sample negative examples instead of full soft-
max

Negative Sampling Objective:

J(θ) = log σ(vT
wO

vwI
) +

k∑
i=1

Ewi∼Pn [log σ(−vT
wi
vwI

)]

Properties of Word2Vec:
• Captures semantic relationships

• Vector arithmetic: king - man + woman ≈ queen

• Syntactic relationships: walking - walk + swim ≈ swimming

• Trained unsupervised on large corpora

GloVe (Global Vectors)
Key Idea: Factorize word co-occurrence matrix.

Objective: Minimize weighted least squares

J =

W∑
i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2

where:
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• Xij = number of times word j appears in context of word i

• f(Xij) = weighting function (caps influence of very frequent pairs)

Weighting Function:

f(x) =

{
(x/xmax)

α if x < xmax

1 otherwise

Typical: xmax = 100, α = 0.75
Advantages over Word2Vec:

• Leverages global corpus statistics

• Faster training (no need to iterate through corpus)

• Often performs better on word analogy tasks

Limitations of Static Embeddings

Problem: One vector per word type, ignores context.
Example: "bank"

• "river bank" (geography)

• "bank account" (finance)

Word2Vec/GloVe give same vector regardless of context!
Solution: Contextualized embeddings (next section).

7.3 Sequence Models for NLP
7.3.1 Recurrent Neural Networks for NLP
Architecture for text:

ht = tanh(Whhht−1 +WxhE[wt] + b)

where E[wt] is embedding of word wt.
Applications:

• Language Modeling: P (wt|w1, . . . , wt−1)

• Sequence Classification: Sentiment analysis

• Sequence Labeling: POS tagging, NER
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7.3.2 Sequence-to-Sequence Models
Architecture:

Encoder: Input sequence → Context vector
Decoder: Context vector → Output sequence

Encoder:
ht = f(ht−1,xt)

c = hT (final hidden state)

Decoder:
st = g(st−1,yt−1, c)

P (yt|y<t,x) = softmax(Wsst)

Training: Teacher forcing (use ground truth as input)
Inference: Greedy decoding or beam search

7.3.3 Attention Mechanism
Problem: Fixed-length context vector is bottleneck for long sequences.

Solution: Let decoder attend to all encoder states.

Bahdanau Attention (Additive)

Attention Score:

eij = vT tanh(Whhi +Wssj−1)

Attention Weights:

αij =
exp(eij)∑
k exp(ekj)

Context Vector:
cj =

∑
i

αijhi

Decoder Update:
sj = f(sj−1,yj−1, cj)
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Luong Attention (Multiplicative)

Score Functions:

• Dot: eij = hT
i sj

• General: eij = hT
i Wsj

• Concat: eij = vT tanh(W[hi; sj ])

Advantages of Attention:

• No fixed-length bottleneck

• Better gradient flow

• Interpretable (can visualize attention weights)

• Enables translation of longer sequences

7.4 Transformers
7.4.1 Motivation
RNN Limitations:

• Sequential computation (hard to parallelize)

• Long-range dependencies difficult despite LSTM

• Gradient flow issues

Transformer Solution:

• Fully attention-based (no recurrence)

• Highly parallelizable

• Direct connections between all positions

7.4.2 Self-Attention
Key Idea: Each position attends to all positions (including itself).

Inputs:

• Query: Q = XWQ

• Key: K = XWK

• Value: V = XWV
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where X ∈ Rn×d is input sequence.
Scaled Dot-Product Attention:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V

Why scale by
√
dk?

• Dot products grow with dimension

• Large values push softmax into regions with tiny gradients

• Scaling keeps variance under control

Computational Complexity: O(n2d) where n is sequence length.

Multi-Head Attention
Idea: Learn multiple attention patterns in parallel.

MultiHead(Q,K,V) = Concat(head1, . . . ,headh)W
O

where:
headi = Attention(QWQ

i ,KWK
i ,VWV

i )

Parameters:

• WQ
i ,W

K
i ,W

V
i ∈ Rdmodel×dk for each head

• WO ∈ Rhdv×dmodel

Typical values: h = 8 heads, dk = dv = dmodel/h = 64
Why Multiple Heads?

• Different heads can attend to different aspects

• Some heads focus on syntax, others on semantics

• Increases model capacity without increasing per-head dimension

7.4.3 Positional Encoding
Problem: Self-attention has no notion of position/order!

Solution: Add positional information to embeddings.
Sinusoidal Positional Encoding:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

Properties:
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• Deterministic (no parameters to learn)

• Can extrapolate to longer sequences than seen in training

• Relative positions encoded via linear combinations
Alternative: Learned positional embeddings (used in BERT, GPT).

7.4.4 Transformer Architecture
Encoder Block

Algorithm 27 Transformer Encoder Layer
1: Input: X ∈ Rn×d

2: ▷ Multi-Head Self-Attention
3: Z←MultiHeadAttention(X,X,X)
4: X← LayerNorm(X+ Z) ▷ Residual + Norm
5: ▷ Position-wise Feed-Forward
6: Z← FFN(X) where FFN(x) = ReLU(xW1 + b1)W2 + b2

7: X← LayerNorm(X+ Z) ▷ Residual + Norm
8: return X

Feed-Forward Network:
FFN(x) = max(0,xW1 + b1)W2 + b2

Applied independently to each position (shared across positions).
Typical dimensions: dmodel = 512, dff = 2048

Decoder Block

Algorithm 28 Transformer Decoder Layer
1: Input: Y (decoder input), X (encoder output)
2: ▷ Masked Multi-Head Self-Attention
3: Z←MaskedMultiHeadAttention(Y,Y,Y)
4: Y ← LayerNorm(Y + Z)
5: ▷ Multi-Head Cross-Attention
6: Z←MultiHeadAttention(Y,X,X) ▷ Q from decoder, K,V from encoder
7: Y ← LayerNorm(Y + Z)
8: ▷ Position-wise Feed-Forward
9: Z← FFN(Y)

10: Y ← LayerNorm(Y + Z)
11: return Y

Masking: Prevent attending to future positions during training.
Full Architecture:
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• Stack N encoder layers (typically 6-12)

• Stack N decoder layers

• Final linear + softmax for output

7.4.5 Training Details
Optimization: Adam with learning rate warmup

lr = d−0.5
model ·min(step−0.5, step ·warmup_steps−1.5)

Regularization:

• Dropout on attention weights

• Dropout on residual connections

• Label smoothing

Original Transformer (2017):

• 6 encoder + 6 decoder layers

• dmodel = 512, h = 8 heads, dk = dv = 64

• dff = 2048

• 65M parameters

7.5 Pre-trained Language Models
7.5.1 The Pre-training Paradigm
Traditional NLP: Train task-specific model from scratch for each task.

Transfer Learning Approach:

1. Pre-training: Train large model on massive unlabeled corpus with
self-supervised objective

2. Fine-tuning: Adapt to downstream task with small labeled dataset

Benefits:

• Leverages unlabeled data (abundant)

• Learns general language understanding

• Reduces need for task-specific labeled data

• State-of-the-art on many benchmarks
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7.5.2 BERT (Bidirectional Encoder Representations from
Transformers)

Architecture

Encoder-only Transformer (no decoder).
Two versions:

• BERT-Base: 12 layers, 768 hidden, 12 heads, 110M parameters

• BERT-Large: 24 layers, 1024 hidden, 16 heads, 340M parameters

Pre-training Tasks

1. Masked Language Modeling (MLM)
Procedure:

1. Randomly mask 15% of tokens

2. Predict original token from context

3. 80% of time: replace with [MASK]

4. 10% of time: replace with random token

5. 10% of time: keep unchanged

Example:

• Input: "The cat sat on the [MASK]"

• Target: Predict "mat"

Why bidirectional? Unlike left-to-right LM, can use both left and right
context.

2. Next Sentence Prediction (NSP)
Task: Given two sentences A and B, predict if B follows A in corpus.
Training data:

• 50% actual consecutive sentences (label: IsNext)

• 50% random sentences from corpus (label: NotNext)

Purpose: Learn relationships between sentences (useful for QA, NLI).
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Fine-tuning

Classification: Add classification layer on [CLS] token

y = softmax(Wh[CLS] + b)

Sequence Labeling: Add classification layer on each token

yi = softmax(Whi + b)

Question Answering (SQuAD):

• Input: [CLS] question [SEP] passage [SEP]

• Predict start and end positions of answer span

• Two output vectors: s (start), e (end)

• P (start = i) = softmax(sThi)

7.5.3 GPT (Generative Pre-trained Transformer)
Architecture

Decoder-only Transformer with causal (left-to-right) attention.
GPT-1:

• 12 layers, 768 hidden, 12 heads

• 117M parameters

• Trained on BooksCorpus (800M words)

GPT-2:

• 48 layers, 1600 hidden, 25 heads

• 1.5B parameters

• Trained on WebText (40GB)

GPT-3:

• 96 layers, 12288 hidden, 96 heads

• 175B parameters

• Trained on 300B tokens
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Pre-training Objective

Autoregressive Language Modeling:

L = −
n∑

i=1

logP (wi|w1, . . . , wi−1)

Predict next token given all previous tokens.
Causal Masking: Token at position i can only attend to positions ≤ i.

In-Context Learning

Key Innovation (GPT-3): Task description + examples in prompt, no fine-
tuning!

Zero-Shot:

Translate English to French:
cheese =>

Few-Shot:

Translate English to French:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche
cheese =>

Emergence: Large models show qualitatively different behavior (rea-
soning, arithmetic, code).

7.5.4 Modern LLMs
Scaling Laws

Key Findings (Kaplan et al., 2020):

• Performance scales as power law with model size, data size, and com-
pute

• Larger models are more sample-efficient

• Optimal allocation: scale model size and data together

L(N) ≈
(
Nc

N

)αN

where N is model parameters, αN ≈ 0.076.
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Instruction Tuning

Problem: Pre-trained LLMs are not aligned with user intent.
Solution: Fine-tune on instruction-following examples.
InstructGPT / ChatGPT Pipeline:
Step 1: Supervised Fine-Tuning (SFT)

• Collect demonstrations of desired behavior

• Fine-tune pre-trained model

Step 2: Reward Modeling (RM)

• Collect comparisons: which output is better?

• Train reward model to predict human preferences

Step 3: Reinforcement Learning from Human Feedback (RLHF)

• Use reward model as reward function

• Optimize policy with PPO (Proximal Policy Optimization)

Objective:

L = Eπθ
[rϕ(x, y)]− βDKL[πθ(y|x)∥πref(y|x)]

where β prevents model from drifting too far from initial policy.

Prompting Techniques

Chain-of-Thought (CoT) Prompting:
Instead of direct answer, elicit step-by-step reasoning.
Example:

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls.
How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 balls
each is 6 balls. 5 + 6 = 11. The answer is 11.

Zero-Shot CoT: Simply add "Let’s think step by step" to prompt!
Self-Consistency: Sample multiple reasoning paths, take majority vote.
ReAct (Reason + Act): Interleave reasoning with actions/tool use.
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7.6 Tokenization
7.6.1 Word-Level Tokenization
Simplest approach: Split on whitespace and punctuation.

Problems:
• Large vocabulary (100K+ words in English)

• Out-of-vocabulary (OOV) words

• Cannot handle morphology (running, runs, ran)

• Language-specific rules needed

7.6.2 Character-Level Tokenization
Vocabulary: Just the alphabet (26-100 characters).

Advantages:
• No OOV

• Small vocabulary

Disadvantages:
• Very long sequences

• Model must learn to compose characters into words

• Computationally expensive

7.6.3 Subword Tokenization
Goldilocks solution: Split into subword units.

Byte Pair Encoding (BPE)
Algorithm:

Algorithm 29 Byte Pair Encoding
1: Initialize vocabulary with all characters
2: Represent corpus as sequences of characters
3: while vocabulary size < target size do
4: Find most frequent adjacent pair of symbols
5: Merge all occurrences of that pair
6: Add merged symbol to vocabulary
7: end while
8: return vocabulary and merge rules
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Example:

Corpus: "low", "lower", "newest", "widest"

Initial: l o w, l o w e r, n e w e s t, w i d e s t

Iteration 1: Merge "e" + "s" → "es"
Result: l o w, l o w e r, n e w es t, w i d es t

Iteration 2: Merge "es" + "t" → "est"
Result: l o w, l o w e r, n e w est, w i d est

...and so on

Encoding: Apply merge rules greedily from longest to shortest.
Advantages:

• Balances vocabulary size and sequence length

• Handles rare words via subword units

• Language-agnostic

• Common words get single tokens, rare words split

Used in: GPT-2, GPT-3, RoBERTa

WordPiece

Similar to BPE but uses likelihood instead of frequency for merging.
Used in: BERT, DistilBERT

SentencePiece

Key difference: Treats text as raw byte stream, no pre-tokenization.
Advantages:

• Truly language-agnostic

• Handles languages without spaces (Chinese, Japanese)

• Reversible (can reconstruct original text exactly)

Used in: T5, ALBERT, XLNet
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7.7 Advanced NLP Tasks and Applications
7.7.1 Machine Translation
Task: Convert text from source language to target language.

Modern Approach: Transformer encoder-decoder
Training: Parallel corpora (source-target pairs)
Evaluation: BLEU score (measures n-gram overlap with references)
Challenges:

• Rare languages (low-resource)

• Domain adaptation

• Idiomatic expressions

• Cultural context

7.7.2 Question Answering
Extractive QA
Task: Find answer span in given passage.

SQuAD Dataset:

• Passage + question → answer span

• BERT fine-tuning achieves human-level performance

Open-Domain QA
Task: Answer question using entire corpus (e.g., Wikipedia).

Two-Stage Approach:

1. Retrieval: Find relevant documents (BM25, dense retrieval)

2. Reading: Extract answer from documents (BERT-based)

Generative QA
Modern LLMs: Generate answers directly without retrieval.

Retrieval-Augmented Generation (RAG):

1. Retrieve relevant documents

2. Concatenate with question as prompt

3. Generate answer with LLM

Advantages:



7.7. ADVANCED NLP TASKS AND APPLICATIONS 183

• Reduces hallucination

• Can cite sources

• Knowledge can be updated without retraining

7.7.3 Text Summarization
Extractive Summarization

Select important sentences from document.
Approaches:

• Graph-based: TextRank (similar to PageRank)

• Learning-based: Train classifier to select sentences

Abstractive Summarization

Generate new text that captures key points.
Seq2Seq with Attention: Encoder-decoder architecture
Pointer-Generator Networks: Can copy from source or generate
Transformer Models: BART, T5, GPT-3
Evaluation: ROUGE scores (n-gram overlap with references)

7.7.4 Named Entity Recognition (NER)
Task: Identify and classify named entities (person, location, organization,
etc.)

Sequence Labeling: BIO tagging scheme

• B-PER: Beginning of person

• I-PER: Inside person

• O: Outside any entity

Example:

Barack B-PER
Obama I-PER
was O
born O
in O
Hawaii B-LOC

Models: BERT + classification layer, CRF on top of BERT
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7.7.5 Sentiment Analysis
Task: Determine emotional tone (positive, negative, neutral).

Levels:
• Document-level: Overall sentiment of document

• Sentence-level: Sentiment of each sentence

• Aspect-based: Sentiment toward specific aspects
Example (aspect-based):

"The food was great but the service was terrible."
Aspect: Food, Sentiment: Positive
Aspect: Service, Sentiment: Negative

Challenges:
• Sarcasm

• Negation

• Domain-specific language

7.8 Problems and Solutions
Standard Problems
Exercise 7.1. Self-Attention Computation: Given input sequence with
3 tokens and dk = 2:

Q =

1 0
0 1
1 1

 , K =

1 0
0 1
0 0

 , V =

1 2
3 4
5 6


Compute the self-attention output.

Solution: Step 1: Compute attention scores

QKT =

1 0
0 1
1 1

[1 0 0
0 1 0

]
=

1 0 0
0 1 0
1 1 0


Step 2: Scale by

√
dk

QKT

√
2

=

0.707 0 0
0 0.707 0

0.707 0.707 0


Step 3: Apply softmax (row-wise)
For row 1: [0.707, 0, 0]
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• exp(0.707) = 2.028, exp(0) = 1

• Sum = 2.028 + 1 + 1 = 4.028

• Softmax: [2.028/4.028, 1/4.028, 1/4.028] = [0.503, 0.248, 0.248]

For row 2: [0, 0.707, 0]

• Softmax: [0.248, 0.503, 0.248]

For row 3: [0.707, 0.707, 0]

• exp(0.707) = 2.028

• Sum = 2.028 + 2.028 + 1 = 5.056

• Softmax: [2.028/5.056, 2.028/5.056, 1/5.056] = [0.401, 0.401, 0.198]

Attention weights:

A =

0.503 0.248 0.248
0.248 0.503 0.248
0.401 0.401 0.198


Step 4: Multiply by values

Output = AV

=

0.503 0.248 0.248
0.248 0.503 0.248
0.401 0.401 0.198

1 2
3 4
5 6


Row 1: 0.503 · [1, 2] + 0.248 · [3, 4] + 0.248 · [5, 6]

= [0.503, 1.006] + [0.744, 0.992] + [1.240, 1.488] = [2.487, 3.486]

Row 2: 0.248 · [1, 2] + 0.503 · [3, 4] + 0.248 · [5, 6]

= [0.248, 0.496] + [1.509, 2.012] + [1.240, 1.488] = [2.997, 3.996]

Row 3: 0.401 · [1, 2] + 0.401 · [3, 4] + 0.198 · [5, 6]

= [0.401, 0.802] + [1.203, 1.604] + [0.990, 1.188] = [2.594, 3.594]

Final Output: 2.487 3.486
2.997 3.996
2.594 3.594


Interpretation:

• Token 1 attends mostly to itself (0.503)
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• Token 2 attends mostly to itself (0.503)

• Token 3 attends equally to tokens 1 and 2 (0.401 each)

■

Exercise 7.2. BPE Tokenization: Given vocabulary resulting from BPE:

["l", "o", "w", "e", "r", "s", "t", "lo", "low", "er", "est"]

Tokenize the word "lowest" using greedy longest-match strategy.

Solution: Greedy Longest-Match Strategy: At each position, match the
longest token in vocabulary.

Word: "lowest"
Position 0: Start of "lowest"

• Check "lowest": Not in vocabulary

• Check "lowes": Not in vocabulary

• Check "lowe": Not in vocabulary

• Check "low": In vocabulary!

Match: "low", remaining: "est"
Position 3: Start of "est"

• Check "est": In vocabulary!

Match: "est", remaining: ""
Final Tokenization: ["low", "est"]
Alternative if "low" not in vocab:
If vocabulary only had: ["l", "o", "w", "e", "r", "s", "t", "lo", "er", "est"]
Position 0:

• Check "lo": In vocabulary!

Match: "lo", remaining: "west"
Position 2:

• Check "west", "wes", "we", "w": Only "w" in vocabulary

Match: "w", remaining: "est"
Position 3:

• Check "est": In vocabulary!

Match: "est"
Result: ["lo", "w", "est"] ■
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Advanced Problems
Exercise 7.3. Transformer Complexity Analysis:

[label=(c)]

1. Analyze the time and space complexity of self-attention for sequence
length n and model dimension d.

2. Compare with RNN complexity.

3. What is the maximum sequence length for a Transformer with 12GB
GPU memory if d = 768, batch size=8, using 32-bit floats?

Solution:
[label=(h)]

1. Self-Attention Complexity:
Step 1: Compute QKT

• Q,K ∈ Rn×d

• QKT ∈ Rn×n

• Time: O(n2d) (matrix multiplication)
• Space: O(n2) (store attention matrix)

Step 2: Softmax

• Time: O(n2)

• Space: O(n2)

Step 3: Multiply by V

• Attention weights ∈ Rn×n, V ∈ Rn×d

• Time: O(n2d)

• Space: O(nd) (output)

Total for Single Layer:

• Time: O(n2d)

• Space: O(n2 + nd) dominated by O(n2) for long sequences

For Multi-Head Attention with h heads:

• Each head operates on dimension dk = d/h

• Time: h ·O(n2 · d/h) = O(n2d) (same!)
• Space: h ·O(n2) = O(hn2)

For Full Transformer with L layers:
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• Time: O(L · n2d)

• Space: O(L · n2) (if storing activations for backprop)

2. RNN Complexity:
Per Time Step:

• Hidden state update: ht = f(Whhht−1 +Wxhxt)

• Time: O(d2) (matrix-vector multiplication)

For Entire Sequence:

• Time: O(n · d2)
• Space: O(nd) (store all hidden states)

Comparison:

Model Time Space
Self-Attention O(n2d) O(n2)
RNN O(nd2) O(nd)

Crossover Point:

• Self-attention better when n < d (short sequences, large models)
• RNN better when n > d (long sequences, smaller models)

But: Self-attention is parallelizable (all positions at once), RNN is
sequential!
Practical Impact: GPUs favor self-attention despite higher complex-
ity for moderate n.

3. Maximum Sequence Length Calculation:
Given:

• Memory: 12GB = 12× 109 bytes
• Model dimension: d = 768

• Batch size: B = 8

• Data type: 32-bit float = 4 bytes
• Assume: L = 12 layers (BERT-base)

Memory Requirements:
1. Attention Matrices:

• Per layer, per head: n× n attention weights
• Number of heads: h = 12

• Total per layer: h×B × n2 floats
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• For L layers: L× h×B × n2 × 4 bytes

2. Activations:

• Per layer: B × n× d floats
• For L layers: L×B × n× d× 4 bytes

3. Model Parameters: (roughly constant, 110M params = 440MB)
Dominant Term: Attention matrices for long sequences
Simplified Calculation (attention only):

Memory ≈ L× h×B × n2 × 4

12× 109 ≥ 12× 12× 8× n2 × 4

12× 109 ≥ 4608× n2

n2 ≤ 12× 109

4608
≈ 2.6× 106

n ≤
√
2.6× 106 ≈ 1, 612

Maximum sequence length: approximately 1,600 tokens
Note: This is simplified. Actual maximum is lower due to:

• Activation storage
• Gradients during training
• Model parameters
• Memory fragmentation
• Framework overhead

Practical BERT-base limits:

• Training: 512 tokens (batch size 16-32)
• Inference: 512-1024 tokens (larger batch possible)

Solutions for Longer Sequences:

• Gradient checkpointing (trade compute for memory)
• Linear attention variants (Linformer, Performer)
• Sparse attention patterns (Longformer, BigBird)
• Sliding window attention

■
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Exercise 7.4. BERT Masked Language Modeling: Given sentence: "The
cat sat on the mat"

[label=(d)]

1. If we mask "cat" for MLM training, what is the loss function?

2. Why does BERT only predict masked tokens rather than all tokens?

3. Explain the 80-10-10 masking strategy and its purpose.

Solution:
[label=(h)]

1. Loss Function for Masked Token:
Input: "The [MASK] sat on the mat"
BERT Processing:

(a) Convert to tokens + add special tokens: [CLS] The [MASK] sat
on the mat [SEP]

(b) Pass through transformer encoder
(c) Get contextualized representation at [MASK] position: h[MASK]

(d) Project to vocabulary: z = Wh[MASK] + b

(e) Apply softmax: P (w|context) = softmax(z)

Loss (Cross-Entropy):

L = − logP (wcat|context) = − log
exp(zcat)∑
w∈V exp(zw)

If masking multiple tokens, sum losses:

L = −
∑

i∈masked
logP (wi|context)

2. Why Only Predict Masked Tokens:
Reason 1: Computational Efficiency

• Vocabulary size: 30,000+ tokens
• Softmax over vocabulary is expensive
• If predicting all tokens: n softmax operations per example
• Masking 15%: 0.15n softmax operations
• Reduces computation by 85%

Reason 2: Task Design
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• Goal: Learn bidirectional representations
• If predicting all tokens, model could "cheat" by copying input
• Masking forces model to use context

Reason 3: Prevent Information Leakage

• If predicting visible tokens, model sees the answer
• Would learn trivial identity function

Contrast with Autoregressive LM (GPT):

• GPT predicts next token given previous tokens (causal)
• Must predict all tokens to avoid information leakage
• BERT can use bidirectional context because targets are masked

3. 80-10-10 Masking Strategy:
The Strategy: When token is selected for masking (15% of tokens):

• 80% of time: Replace with [MASK]
• 10% of time: Replace with random token
• 10% of time: Keep unchanged

Example: Sentence "The cat sat on the mat", mask "cat" (selected
15%)

• 80%: "The [MASK] sat on the mat"
• 10%: "The dog sat on the mat" (random)
• 10%: "The cat sat on the mat" (unchanged)

Purpose:
Problem with 100% [MASK]:

MASK token never appears during fine-tuning
• Creates mismatch between pre-training and fine-tuning
• Model might overfit to [MASK] token

Why 80% [MASK]:

• Strong signal for learning
• Clear indication of what to predict
• Majority strategy prevents mismatch from dominating

Why 10% Random:

• Forces model to correct errors
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• Improves robustness to noise
• Model cannot rely solely on input token
• Must use context to verify token makes sense

Why 10% Unchanged:

• Reduces pre-training/fine-tuning mismatch
• Model learns to produce representations for real tokens
• Encourages model to use context even when token visible
• Acts as regularization

Effective Masking:

• 15% tokens selected
• 0.15× 0.8 = 0.12 (12%) actually have [MASK]
• 0.15× 0.1 = 0.015 (1.5%) random
• 0.15× 0.1 = 0.015 (1.5%) unchanged

Implementation Note:
In practice, when token unchanged (10% case), we still:

• Include it in loss calculation
• Model must predict it from context
• Different from truly ignoring the token

This forces model to always produce meaningful representations, not
just for [MASK].

■

7.9 Conclusion
Natural Language Processing has been revolutionized by deep learning,
particularly transformers and large-scale pre-training. Key developments
include:

Representational Advances:

• From sparse bag-of-words to dense contextualized embeddings

• Attention mechanisms enabling long-range dependencies

• Transformer architecture as universal backbone

Pre-training Paradigm:
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• Self-supervised learning on massive text corpora

• Transfer learning through fine-tuning

• Emergence of few-shot and zero-shot capabilities

Modern Applications:

• Machine translation approaching human parity

• Question answering from knowledge bases

• Conversational AI (ChatGPT, Claude)

• Code generation and reasoning

Open Challenges:

• Factual accuracy and hallucination

• Reasoning and common sense

• Efficiency and environmental impact

• Multilingual and low-resource languages

• Interpretability and controllability

The field continues to evolve rapidly with increasingly capable models,
novel architectures for efficiency, and integration with other modalities (vi-
sion, speech, code).



Chapter 8

Reinforcement Learning

8.1 Introduction to Reinforcement Learning
8.1.1 The Reinforcement Learning Problem
Reinforcement Learning (RL) is fundamentally different from supervised
and unsupervised learning. An agent learns to make sequential decisions
by interacting with an environment, receiving rewards or penalties for its
actions.

Key Characteristics:

• Sequential: Actions affect future states and rewards

• Evaluative: Feedback is reward signal, not correct action

• Trial-and-Error: Agent must explore to discover good actions

• Delayed Consequences: Actions may have long-term effects

• Agent-Environment Interaction: Active learning through experi-
ence

Contrast with Other Paradigms:

Supervised Learning Unsupervised Learning Reinforcement Learning
Labeled examples Unlabeled data Reward signals
Learn from teacher Find structure Learn from interaction
Independent samples Independent samples Sequential decisions
Correct answer given No labels Evaluative feedback only

8.1.2 Key Components
• Agent: The learner/decision maker

194
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• Environment: Everything outside the agent

• State st: Representation of current situation

• Action at: Decision made by agent

• Reward rt: Scalar feedback signal

• Policy π: Strategy for selecting actions

• Value Function V or Q: Expected long-term return

8.1.3 Applications
• Game Playing: Chess, Go, Atari, Dota 2, StarCraft

• Robotics: Manipulation, locomotion, navigation

• Autonomous Driving: Lane keeping, parking, full self-driving

• Resource Management: Data center cooling, traffic light control

• Finance: Portfolio optimization, trading strategies

• Healthcare: Treatment policies, drug dosing

• Recommendation Systems: Personalized content delivery

8.2 Markov Decision Processes
8.2.1 Formal Definition
An MDP is defined by tuple (S,A, P,R, γ):

• S: Set of states

• A: Set of actions

• P (s′|s, a): Transition probability

• R(s, a, s′): Reward function

• γ ∈ [0, 1): Discount factor

Markov Property: Future is independent of past given present

P (st+1|st, at, st−1, at−1, . . . , s0, a0) = P (st+1|st, at)
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8.2.2 Return and Value Functions
Return

Undiscounted Return:

Gt = Rt+1 +Rt+2 +Rt+3 + · · · =
∞∑
k=0

Rt+k+1

Discounted Return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1

Why Discount?

• Mathematical convenience (ensures convergence)

• Uncertainty about future

• Preference for immediate rewards

• Avoids infinite returns in continuing tasks

State Value Function

V π(s) = Eπ[Gt|St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]

Expected return starting from state s, following policy π.

Action Value Function

Qπ(s, a) = Eπ[Gt|St = s,At = a]

Expected return starting from state s, taking action a, then following
policy π.

Optimal Value Functions

V ∗(s) = max
π

V π(s)

Q∗(s, a) = max
π

Qπ(s, a)
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8.2.3 Bellman Equations
Bellman Expectation Equation
For V π:

V π(s) =
∑
a

π(a|s)
∑
s′

P (s′|s, a)[R(s, a, s′) + γV π(s′)]

= Eπ[Rt+1 + γV π(St+1)|St = s]

For Qπ:

Qπ(s, a) =
∑
s′

P (s′|s, a)[R(s, a, s′) + γ
∑
a′

π(a′|s′)Qπ(s′, a′)]

= Eπ[Rt+1 + γQπ(St+1, At+1)|St = s,At = a]

Bellman Optimality Equation
For V ∗:

V ∗(s) = max
a

∑
s′

P (s′|s, a)[R(s, a, s′) + γV ∗(s′)]

For Q∗:

Q∗(s, a) =
∑
s′

P (s′|s, a)[R(s, a, s′) + γmax
a′

Q∗(s′, a′)]

Optimal Policy:
π∗(s) = argmax

a
Q∗(s, a)

8.3 Dynamic Programming
8.3.1 Policy Evaluation
Goal: Compute V π for given policy π.

Iterative Algorithm:

Algorithm 30 Policy Evaluation (Iterative)
1: Initialize V (s) arbitrarily for all s ∈ S, V (terminal) = 0
2: repeat
3: ∆← 0
4: for each state s ∈ S do
5: v ← V (s)
6: V (s)←

∑
a π(a|s)

∑
s′ P (s

′|s, a)[R(s, a, s′) + γV (s′)]
7: ∆← max(∆, |v − V (s)|)
8: end for
9: until ∆ < θ (threshold)

10: return V
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Complexity: O(|S|2|A|) per iteration.

8.3.2 Policy Improvement

Policy Improvement Theorem: If Qπ(s, π′(s)) ≥ V π(s) for all s, then
π′ ≥ π.

Greedy Policy Improvement:

π′(s) = argmax
a

Qπ(s, a) = argmax
a

∑
s′

P (s′|s, a)[R(s, a, s′) + γV π(s′)]

8.3.3 Policy Iteration

Algorithm 31 Policy Iteration
1: Initialize policy π arbitrarily
2: repeat
3: ▷ Policy Evaluation
4: V ← V π (solve Bellman expectation equation)
5: ▷ Policy Improvement
6: policy_stable← true
7: for each state s ∈ S do
8: old_action← π(s)
9: π(s)← argmaxa

∑
s′ P (s

′|s, a)[R(s, a, s′) + γV (s′)]
10: if old_action ̸= π(s) then
11: policy_stable← false
12: end if
13: end for
14: until policy_stable
15: return π, V

Convergence: Guaranteed in finite number of iterations (typically very
few).

8.3.4 Value Iteration

Idea: Combine policy evaluation and improvement into single update.
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Algorithm 32 Value Iteration
1: Initialize V (s) arbitrarily, V (terminal) = 0
2: repeat
3: ∆← 0
4: for each state s ∈ S do
5: v ← V (s)
6: V (s)← maxa

∑
s′ P (s

′|s, a)[R(s, a, s′) + γV (s′)]
7: ∆← max(∆, |v − V (s)|)
8: end for
9: until ∆ < θ

10: ▷ Extract policy
11: π(s) = argmaxa

∑
s′ P (s

′|s, a)[R(s, a, s′) + γV (s′)]
12: return π, V

Comparison with Policy Iteration:

• Faster per iteration (no inner loop)

• May require more iterations

• No explicit policy until end

8.4 Monte Carlo Methods

Key Idea: Learn from complete episodes of experience (no model needed).

8.4.1 Monte Carlo Prediction

Goal: Estimate V π(s) by averaging returns from that state.
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First-Visit MC

Algorithm 33 First-Visit Monte Carlo Policy Evaluation
1: Initialize:
2: V (s)← arbitrary for all s ∈ S
3: Returns(s)← empty list for all s ∈ S
4: loop
5: Generate episode following π: S0, A0, R1, S1, A1, R2, . . . , ST−1, AT−1, RT

6: G← 0
7: for t = T − 1, T − 2, . . . , 0 do
8: G← γG+Rt+1

9: if St not in S0, S1, . . . , St−1 then ▷ First visit to St

10: Append G to Returns(St)
11: V (St)← average(Returns(St))
12: end if
13: end for
14: end loop

Every-Visit MC

Remove the first-visit check; average all returns from all visits to each state.

Properties:

• Model-free (no need for transition probabilities)

• Learn from complete episodes only

• Unbiased estimates

• High variance
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8.4.2 Monte Carlo Control
Monte Carlo with Exploring Starts

Algorithm 34 Monte Carlo ES (Exploring Starts)
1: Initialize:
2: Q(s, a) arbitrarily for all s ∈ S, a ∈ A
3: π(s) arbitrarily for all s ∈ S
4: Returns(s,a)← empty list for all s, a
5: loop
6: Choose random S0 ∈ S and A0 ∈ A ▷ Exploring starts
7: Generate episode starting from S0, A0 following π
8: G← 0
9: for t = T − 1, T − 2, . . . , 0 do

10: G← γG+Rt+1

11: if (St, At) not in (S0, A0), (S1, A1), . . . , (St−1, At−1) then
12: Append G to Returns(St, At)
13: Q(St, At)← average(Returns(St, At))
14: π(St)← argmaxaQ(St, a)
15: end if
16: end for
17: end loop

On-Policy vs. Off-Policy
On-Policy: Learn value of policy being executed

• Example: SARSA, Monte Carlo with ϵ-greedy

• More conservative

• Learns about actual behavior

Off-Policy: Learn value of target policy while following behavior policy

• Example: Q-Learning, Monte Carlo with importance sampling

• Can learn from demonstrations or suboptimal behavior

• More flexible but higher variance

8.4.3 Epsilon-Greedy Exploration
Policy:

π(a|s) =

{
1− ϵ+ ϵ

|A(s)| if a = argmaxa′ Q(s, a′)
ϵ

|A(s)| otherwise

Properties:
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• Ensures all actions explored

• Balances exploitation (use best known action) and exploration (try
other actions)

• Often decay ϵ over time: ϵt = max(ϵmin, ϵ0 · decayt)

8.5 Temporal Difference Learning
Key Idea: Learn from incomplete episodes, bootstrap from current esti-
mates.

Combines:

• MC: Sample-based, model-free

• DP: Bootstrap from value estimates

8.5.1 TD(0) Prediction
Update Rule:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)]

TD Error:
δt = Rt+1 + γV (St+1)− V (St)

Algorithm 35 TD(0) for Policy Evaluation
1: Initialize V (s) arbitrarily, V (terminal) = 0
2: Input: policy π to evaluate
3: for each episode do
4: Initialize S
5: for each step of episode do
6: A← action given by π for S
7: Take action A, observe R, S′

8: V (S)← V (S) + α[R+ γV (S′)− V (S)]
9: S ← S′

10: if S is terminal then
11: break
12: end if
13: end for
14: end for

Advantages over MC:

• Can learn online (no need to wait for episode end)
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• Can learn from incomplete sequences

• Lower variance (but biased)

• Works for continuing tasks

8.5.2 SARSA (On-Policy TD Control)

State-Action-Reward-State-Action
Update Rule:

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]

Algorithm 36 SARSA
1: Initialize Q(s, a) arbitrarily, Q(terminal, ·) = 0
2: for each episode do
3: Initialize S
4: Choose A from S using policy derived from Q (e.g., ϵ-greedy)
5: for each step of episode do
6: Take action A, observe R, S′

7: Choose A′ from S′ using policy derived from Q
8: Q(S,A)← Q(S,A) + α[R+ γQ(S′, A′)−Q(S,A)]
9: S ← S′; A← A′

10: if S is terminal then
11: break
12: end if
13: end for
14: end for

Convergence: Under certain conditions (decreasing α, sufficient explo-
ration), converges to optimal Q∗.

8.5.3 Q-Learning (Off-Policy TD Control)

Key Innovation: Learn optimal policy while following exploratory policy.
Update Rule:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a′

Q(St+1, a
′)−Q(St, At)]
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Algorithm 37 Q-Learning
1: Initialize Q(s, a) arbitrarily, Q(terminal, ·) = 0
2: for each episode do
3: Initialize S
4: for each step of episode do
5: Choose A from S using policy derived from Q (e.g., ϵ-greedy)
6: Take action A, observe R, S′

7: Q(S,A)← Q(S,A) + α[R+ γmaxa′ Q(S′, a′)−Q(S,A)]
8: S ← S′

9: if S is terminal then
10: break
11: end if
12: end for
13: end for

Key Difference from SARSA:
• SARSA: Q(S′, A′) where A′ actually taken

• Q-Learning: maxa′ Q(S′, a′) regardless of action taken

Example: Cliff Walking
Environment: Grid world with cliff at bottom. Goal: reach goal state.
SARSA:
• Learns safe path away from cliff

• Accounts for exploration risk

Q-Learning:
• Learns optimal path along cliff edge

• Ignores exploration in learning (off-policy)

8.5.4 Expected SARSA
Idea: Instead of sampling next action, take expectation.

Update Rule:

Q(St, At)← Q(St, At) + α[Rt+1 + γ
∑
a′

π(a′|St+1)Q(St+1, a
′)−Q(St, At)]

Properties:
• Lower variance than SARSA

• Can be on-policy or off-policy

• Computationally more expensive (sum over actions)
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8.6 Value Function Approximation
Problem: Tabular methods don’t scale to large state spaces.

Solution: Approximate value function with parametric function.

V (s) ≈ V̂ (s; θ)

Q(s, a) ≈ Q̂(s, a; θ)

8.6.1 Linear Function Approximation

V̂ (s; θ) = θTϕ(s) =

n∑
i=1

θiϕi(s)

where ϕ(s) are features of state s.
Gradient Descent Update:

θ ← θ + α[V π(s)− V̂ (s; θ)]∇θV̂ (s; θ)

Since V π(s) unknown, use TD target:

θ ← θ + α[R+ γV̂ (S′; θ)− V̂ (S; θ)]∇θV̂ (S; θ)

8.6.2 Deep Q-Networks (DQN)
Key Innovation: Use deep neural network to approximate Q(s, a).

Challenges:

1. Correlated samples (sequential states)

2. Non-stationary targets

3. Bootstrapping (using estimates to update estimates)

Experience Replay

Idea: Store transitions in replay buffer, sample randomly for training.
Replay Buffer: D = {(st, at, rt, st+1)}
Benefits:

• Breaks correlation between samples

• More data-efficient (reuse experiences)

• Smooths out learning
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Target Network

Idea: Use separate network for computing TD targets.
Two Networks:

• Online network: Q(s, a; θ) (updated every step)

• Target network: Q(s, a; θ−) (updated every C steps)

Loss Function:

L(θ) = E(s,a,r,s′)∼D[(r + γmax
a′

Q(s′, a′; θ−)−Q(s, a; θ))2]

Stabilizes Training: Targets don’t change every step.

DQN Algorithm

Algorithm 38 Deep Q-Network (DQN)
1: Initialize replay buffer D with capacity N
2: Initialize Q-network Q(s, a; θ) with random weights
3: Initialize target network Q(s, a; θ−) = Q(s, a; θ)
4: for episode = 1 to M do
5: Initialize state s
6: for t = 1 to T do
7: With probability ϵ select random action a
8: otherwise select a = argmaxa′ Q(s, a′; θ)
9: Execute action a, observe reward r and next state s′

10: Store transition (s, a, r, s′) in D
11: Sample random minibatch of transitions (sj , aj , rj , s

′
j) from D

12: Set target yj =
{
rj if episode terminates at j + 1

rj + γmaxa′ Q(s′j , a
′; θ−) otherwise

13: Perform gradient descent on (yj −Q(sj , aj ; θ))
2

14: Every C steps: θ− ← θ
15: s← s′

16: end for
17: end for

Results: DQN achieved human-level performance on 49 Atari games (2015).

8.6.3 Double DQN
Problem: DQN overestimates Q-values due to max operator.

Solution: Decouple action selection and evaluation.
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Standard DQN Target:

Y DQN
t = Rt+1 + γmax

a
Q(St+1, a; θ

−)

Double DQN Target:

Y DDQN
t = Rt+1 + γQ(St+1, argmax

a
Q(St+1, a; θ); θ

−)

Interpretation: Use online network to select action, target network to
evaluate it.

8.6.4 Dueling DQN
Idea: Separate value and advantage functions.

Architecture:

Q(s, a; θ, α, β) = V (s; θ, β) +A(s, a; θ, α)

where:

• V (s; θ, β): State value function

• A(s, a; θ, α): Advantage function

• θ: Shared network parameters

• α, β: Stream-specific parameters

Identifiability Issue: Q(s, a) = V (s)+A(s, a) not unique (can add con-
stant to V and subtract from A).

Solution: Force advantage to have zero mean:

Q(s, a) = V (s) +

(
A(s, a)− 1

|A|
∑
a′

A(s, a′)

)

Or use max:

Q(s, a) = V (s) + (A(s, a)−max
a′

A(s, a′))

Benefit: Learns which states are valuable independent of action choice.

8.7 Policy Gradient Methods
Key Idea: Directly optimize policy without value function.
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8.7.1 Why Policy Gradient?
Advantages:

• Can learn stochastic policies

• Effective in high-dimensional or continuous action spaces

• Better convergence properties

• Can incorporate domain knowledge into policy structure
Disadvantages:
• High variance

• Sample inefficient

• Can converge to local optima

8.7.2 Policy Parametrization
Stochastic Policy:

π(a|s; θ) = P (A = a|S = s; θ)

Examples:
• Discrete Actions: Softmax over action preferences

π(a|s; θ) = exp(h(s, a; θ))∑
a′ exp(h(s, a′; θ))

• Continuous Actions: Gaussian policy

π(a|s; θ) = N (µ(s; θ), σ2)

8.7.3 Policy Gradient Theorem
Objective:

J(θ) = Eτ∼πθ
[G0] = Eτ∼πθ

[
T∑

t=0

Rt+1

]
Theorem:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log π(At|St; θ)Gt

]
Interpretation:
• ∇θ log π(At|St; θ): Direction to increase probability of action

• Gt: How good the action was (weight the gradient)
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8.7.4 REINFORCE Algorithm

Algorithm 39 REINFORCE (Monte Carlo Policy Gradient)
1: Initialize policy parameters θ
2: for each episode do
3: Generate episode S0, A0, R1, . . . , ST−1, AT−1, RT following π(·|·; θ)
4: for t = 0 to T − 1 do
5: G←

∑T
k=t+1 γ

k−t−1Rk

6: θ ← θ + αγtG∇θ log π(At|St; θ)
7: end for
8: end for

Problem: High variance (uses full return Gt).

8.7.5 Actor-Critic Methods

Idea: Combine policy gradient (actor) with value function (critic).
Actor: Updates policy π(a|s; θ)
Critic: Estimates value function V (s;w) or Q(s, a;w)

Advantage: Critic provides lower-variance estimates than full returns.

Basic Actor-Critic

TD Error as Critic:

δt = Rt+1 + γV (St+1;w)− V (St;w)

Actor Update:

θ ← θ + αθδt∇θ log π(At|St; θ)

Critic Update:

w ← w + αwδt∇wV (St;w)
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Algorithm 40 Actor-Critic
1: Initialize policy parameters θ and value parameters w
2: for each episode do
3: Initialize S
4: for each step do
5: Sample A ∼ π(·|S; θ)
6: Take action A, observe R, S′

7: δ ← R+ γV (S′;w)− V (S;w)
8: w ← w + αwδ∇wV (S;w)
9: θ ← θ + αθδ∇θ log π(A|S; θ)

10: S ← S′

11: end for
12: end for

Advantage Actor-Critic (A2C)
Advantage Function:

A(s, a) = Q(s, a)− V (s)

Measures how much better action a is than average.
Update:

θ ← θ + α∇θ log π(At|St; θ)A(St, At)

Advantage Estimation:

A(St, At) ≈ Rt+1 + γV (St+1;w)− V (St;w)

Variance Reduction: Subtracting baseline V (s) reduces variance with-
out adding bias.

8.7.6 Trust Region Methods
Problem: Large policy updates can be destructive.

Idea: Constrain policy updates to trust region.

Trust Region Policy Optimization (TRPO)
Objective:

max
θ

Es,a∼πθold

[
π(a|s; θ)
π(a|s; θold)

Aπθold (s, a)

]
Subject to:

Es∼πθold
[DKL(π(·|s; θold)∥π(·|s; θ))] ≤ δ

Implementation: Use conjugate gradient and line search.
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Proximal Policy Optimization (PPO)
Simpler Alternative to TRPO

Clipped Objective:

LCLIP(θ) = Et [min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)]

where:
rt(θ) =

π(At|St; θ)

π(At|St; θold)

Clipping: Prevents too large policy updates.
Benefits:

• Simpler than TRPO (first-order method)

• More sample efficient than TRPO

• Widely used in practice (OpenAI Five, ChatGPT RLHF)

Algorithm 41 PPO (Proximal Policy Optimization)
1: Initialize policy parameters θ, value parameters w
2: for iteration = 1, 2, ... do
3: for actor = 1 to N do
4: Run policy πθold for T timesteps
5: Compute advantage estimates Ât

6: end for
7: Optimize surrogate LCLIP w.r.t. θ for K epochs
8: Optimize value loss w.r.t. w for K epochs
9: θold ← θ

10: end for

8.8 Advanced Topics
8.8.1 Model-Based RL
Idea: Learn model of environment dynamics, use for planning.

World Model: P̂ (s′|s, a) and R̂(s, a, s′)
Approaches:

1. Learn model, use DP (value iteration, policy iteration)

2. Learn model, use MCTS for planning

3. Dyna architecture: Learn model, generate simulated experience

Advantages:
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• Sample efficient (reuse data for multiple updates)

• Can plan with learned model

• Transfer to new tasks

Challenges:

• Model errors compound

• Difficult to learn accurate models

• Exploration vs. exploitation in model learning

8.8.2 Multi-Agent RL
Challenges:

• Non-stationary environment (other agents learning)

• Credit assignment (which agent responsible for outcome?)

• Coordination vs. competition

Approaches:

• Independent learners (each agent treats others as environment)

• Centralized training, decentralized execution (CTDE)

• Communication between agents

8.8.3 Hierarchical RL
Idea: Decompose tasks into subtasks, learn hierarchical policies.

Options Framework:

• Option = (initiation set, policy, termination condition)

• Agents select options rather than primitive actions

• Temporal abstraction

Benefits:

• Exploration efficiency

• Transfer learning

• Interpretability
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8.9 Problems and Solutions
Standard Problems
Exercise 8.1. Bellman Equation Verification: Given MDP with two
states {s1, s2}, two actions {a1, a2}, discount γ = 0.9:

Transitions and rewards:
• P (s1|s1, a1) = 0.8, P (s2|s1, a1) = 0.2, R(s1, a1) = 5

• P (s1|s1, a2) = 0.3, P (s2|s1, a2) = 0.7, R(s1, a2) = 10

• P (s1|s2, a1) = 0.0, P (s2|s2, a1) = 1.0, R(s2, a1) = 1

• P (s1|s2, a2) = 0.0, P (s2|s2, a2) = 1.0, R(s2, a2) = 1

Policy: π(a1|s1) = 1, π(a1|s2) = 1
Verify that V π(s1) = 28.28 and V π(s2) = 10 satisfy the Bellman expecta-

tion equation.

Solution: Bellman Expectation Equation:

V π(s) =
∑
a

π(a|s)
∑
s′

P (s′|s, a)[R(s, a) + γV π(s′)]

For s1:
Since π(a1|s1) = 1, only a1 matters:

V π(s1) =
∑
s′

P (s′|s1, a1)[R(s1, a1) + γV π(s′)]

= P (s1|s1, a1)[5 + 0.9V π(s1)] + P (s2|s1, a1)[5 + 0.9V π(s2)]

= 0.8[5 + 0.9(28.28)] + 0.2[5 + 0.9(10)]

= 0.8[5 + 25.452] + 0.2[5 + 9]

= 0.8(30.452) + 0.2(14)

= 24.3616 + 2.8

= 27.1616 ≈ 27.16

Wait, this doesn’t match 28.28. Let me recalculate assuming immediate
reward not dependent on next state:

V π(s1) = 5 + γ[P (s1|s1, a1)V π(s1) + P (s2|s1, a1)V π(s2)]

= 5 + 0.9[0.8(28.28) + 0.2(10)]

= 5 + 0.9[22.624 + 2]

= 5 + 0.9(24.624)

= 5 + 22.1616

= 27.1616
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Still doesn’t match. Let me solve for the actual value:

V π(s1) = 5 + 0.9[0.8V π(s1) + 0.2(10)]

V π(s1) = 5 + 0.72V π(s1) + 1.8

V π(s1)− 0.72V π(s1) = 6.8

0.28V π(s1) = 6.8

V π(s1) =
6.8

0.28
≈ 24.29

For s2:

V π(s2) = 1 + 0.9[P (s2|s2, a1)V π(s2)]

= 1 + 0.9(1.0)V π(s2)

= 1 + 0.9V π(s2)

V π(s2)− 0.9V π(s2) = 1

0.1V π(s2) = 1

V π(s2) = 10 ✓

Corrected verification: The given V π(s1) = 28.28 does not satisfy the
Bellman equation. The correct value is approximately V π(s1) = 24.29.

Summary:
• V π(s2) = 10 (correct)

• V π(s1) ≈ 24.29 (not 28.28)
■

Exercise 8.2. Q-Learning vs. SARSA: Explain with an example why Q-
Learning is off-policy while SARSA is on-policy. Why might Q-Learning
learn a different policy than SARSA on the same problem?

Solution: Key Difference:
SARSA Update:

Q(S,A)← Q(S,A) + α[R+ γQ(S′, A′)−Q(S,A)]

Uses action A′ actually taken (from policy).
Q-Learning Update:

Q(S,A)← Q(S,A) + α[R+ γmax
a′

Q(S′, a′)−Q(S,A)]

Uses maximum over all actions (greedy).
Example: Cliff Walking
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Start . . . . . . . . . . Goal
. . . . . . . . . . . .
. . . . . . . . . . . .
. C C C C C C C C C C .

C = Cliff (large negative reward), . = Safe
Both algorithms use ϵ-greedy with ϵ = 0.1
Q-Learning:

• Learns optimal policy: path along cliff edge

• Updates assume optimal actions taken (maxQ)

• Ignores exploration in value estimates

• Result: Q∗ values reflect optimal greedy path

Path learned: Start → right along cliff → Goal
SARSA:

• Learns safe policy: path away from cliff

• Updates use actions actually taken (including random exploration)

• Accounts for ϵ probability of falling off cliff

• Result: Q values reflect expected return under ϵ-greedy

Path learned: Start → up → right (safe route) → down → Goal
Why Different?
SARSA reasoning:

• "If I follow policy near cliff, sometimes explore randomly"

• "Random exploration near cliff = fall and get huge penalty"

• "Therefore, expected value of being near cliff is low"

• "Better to take safe path with lower reward but no risk"

Q-Learning reasoning:

• "What’s the value assuming I always act optimally?"

• "Optimal path is along cliff edge (shortest distance)"

• "Exploration during learning doesn’t matter for Q∗ estimate"

• "Learn Q∗ even while exploring suboptimally"

Practical Implications:
When to use Q-Learning:
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• Want to learn optimal policy regardless of exploration

• Can tolerate learning from suboptimal behavior

• Faster convergence to optimal policy

When to use SARSA:

• Safety-critical applications

• Want policy that accounts for exploration

• Online learning where must perform well during training

Performance during training:

• SARSA: Better (learns safe policy early)

• Q-Learning: Worse (learns optimal but falls off cliff during exploration)

Final converged policy (with ϵ→ 0):

• SARSA: Converges to safe path

• Q-Learning: Converges to optimal path along cliff

■

Advanced Problems
Exercise 8.3. Policy Gradient Derivation: Derive the policy gradient
theorem. Show that:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log π(At|St; θ)Gt

]

Start from J(θ) = Eτ∼πθ
[G0] where τ is a trajectory.

Solution: Setup:
Trajectory: τ = (S0, A0, R1, S1, A1, R2, . . . , ST )

Return: G0 =
∑T

t=0Rt+1

Objective: J(θ) = Eτ∼πθ
[G0] =

∑
τ P (τ ; θ)G(τ)

Trajectory Probability:

P (τ ; θ) = P (S0)

T∏
t=0

π(At|St; θ)P (St+1|St, At)

Step 1: Gradient of Objective
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∇θJ(θ) = ∇θ

∑
τ

P (τ ; θ)G(τ)

=
∑
τ

∇θP (τ ; θ)G(τ)

=
∑
τ

P (τ ; θ)
∇θP (τ ; θ)

P (τ ; θ)
G(τ)

=
∑
τ

P (τ ; θ)∇θ logP (τ ; θ)G(τ)

= Eτ∼πθ
[∇θ logP (τ ; θ)G(τ)]

Trick used: ∇θ logP (τ ; θ) =
∇θP (τ ;θ)
P (τ ;θ)

Step 2: Gradient of Log Probability

∇θ logP (τ ; θ) = ∇θ log

[
P (S0)

T∏
t=0

π(At|St; θ)P (St+1|St, At)

]

= ∇θ

[
logP (S0) +

T∑
t=0

log π(At|St; θ) +

T∑
t=0

logP (St+1|St, At)

]

Note: P (S0) and P (St+1|St, At) don’t depend on θ (environment dynam-
ics)!

∇θ logP (τ ; θ) =

T∑
t=0

∇θ log π(At|St; θ)

Step 3: Substitute Back

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log π(At|St; θ)G(τ)

]

where G(τ) =
∑T

t=0Rt+1 is return of trajectory.
Step 4: Causality (Key Insight)
Reward at time t doesn’t depend on future actions, so:

Eτ [Rk∇θ log π(At|St; θ)] = 0 for k ≤ t

Therefore, we can replace G(τ) with Gt =
∑T

k=tRk+1:

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log π(At|St; θ)Gt

]
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Interpretation:

∇θJ(θ) = E

 T∑
t=0

∇θ log π(At|St; θ)︸ ︷︷ ︸
direction to ↑π(At|St)

Gt︸︷︷︸
how good was At


• If Gt > 0: Increase probability of At

• If Gt < 0: Decrease probability of At

• Magnitude of Gt determines strength of update

This is the foundation of REINFORCE and all policy gradient
methods! ■

8.10 Conclusion
Reinforcement Learning enables agents to learn optimal behavior through
trial and error interaction with environments. Key developments include:

Foundational Methods:

• Dynamic Programming for known models

• Monte Carlo and TD learning for model-free settings

• Q-Learning and SARSA for value-based control

Deep RL Revolution:

• DQN: Function approximation with neural networks

• Policy gradients: Direct optimization of policies

• Actor-Critic: Combining value and policy methods

• PPO/TRPO: Stable, sample-efficient policy optimization

Major Achievements:

• Human-level performance on Atari games

• Defeating world champions in Go, Chess, Dota 2, StarCraft

• Robotic manipulation and locomotion

• Real-world applications in resource management

Open Challenges:

• Sample efficiency (millions of samples required)
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• Transfer learning across tasks

• Safe exploration

• Reward specification and alignment

• Scaling to complex, high-dimensional problems

RL remains an active research area with applications expanding from
games to robotics, autonomous systems, and AI alignment.



Chapter 9

Computer Vision

9.1 Introduction to Computer Vision
9.1.1 What is Computer Vision?
Computer Vision (CV) is the field of AI that enables computers to derive
meaningful information from digital images, videos, and other visual in-
puts, and take actions or make recommendations based on that informa-
tion.

Goal: Automate tasks that human visual system can do.
Core Challenge: Bridge the semantic gap between low-level pixels and

high-level understanding.

9.1.2 Historical Evolution
1960s-1980s: Early Vision

• Edge detection (Roberts, Sobel, Canny)

• Shape from shading, stereo vision

• Block world understanding

1990s-2000s: Feature-Based Methods

• SIFT, SURF, HOG features

• Bag of Visual Words

• SVM classifiers on hand-crafted features

2012-Present: Deep Learning Era

• AlexNet (2012): CNN revolution

220
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• ImageNet competition drives progress

• End-to-end learning replaces feature engineering

• Transformers enter vision (ViT, 2020)

9.1.3 Core Computer Vision Tasks
• Image Classification: Assign label to entire image

• Object Detection: Locate and classify multiple objects

• Semantic Segmentation: Label every pixel by class

• Instance Segmentation: Separate object instances

• Pose Estimation: Detect keypoints (human joints, facial landmarks)

• Depth Estimation: Predict distance to camera

• Image Generation: Create realistic images

• Video Understanding: Temporal reasoning

9.2 Image Classification
9.2.1 Problem Formulation
Input: Image I ∈ RH×W×3

Output: Class label y ∈ {1, 2, . . . , C}
Model: f : RH×W×3 → RC

Training: Minimize cross-entropy loss

L = −
N∑
i=1

C∑
c=1

yic log ŷic

where ŷic = softmax(f(Ii))c

9.2.2 ImageNet and the Classification Benchmark
ImageNet:

• 1.2M training images

• 1000 classes (dog breeds, vehicles, objects)

• ILSVRC competition (2010-2017)

Progress:
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• 2010: 28% error (hand-crafted features + SVM)

• 2012: 16% error (AlexNet)

• 2015: 3.6% error (ResNet-152, superhuman)

• 2017: 2.3% error (SENet)

9.2.3 Advanced CNN Architectures
Inception/GoogLeNet
Key Idea: Multi-scale feature extraction via inception modules.

Inception Module:
• Parallel paths: 1x1, 3x3, 5x5 conv, 3x3 max pool

• Concatenate outputs

• 1x1 convolutions for dimensionality reduction
Benefits:
• Network chooses useful filter sizes

• Computational efficiency

• 22 layers, only 5M parameters

ResNet (Residual Networks)
Problem: Very deep networks degrade (optimization issue, not overfitting).

Solution: Skip connections
y = F (x) + x

Residual Block:
x → [Conv-BN-ReLU] → [Conv-BN] → (+) → ReLU → y

↑
x (identity shortcut)

Bottleneck Design (ResNet-50/101/152):
• 1x1 conv (reduce channels)

• 3x3 conv (main computation)

• 1x1 conv (restore channels)
Why It Works:
• Easy to learn identity (set F (x) = 0)

• Gradients flow directly through shortcuts

• Enables training of 100+ layer networks
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DenseNet
Idea: Each layer connects to all previous layers.

xl = Hl([x0,x1, . . . ,xl−1])

Benefits:

• Alleviates vanishing gradient

• Encourages feature reuse

• Fewer parameters than ResNet

EfficientNet
Key Idea: Compound scaling of depth, width, and resolution.

Scaling Rule:

depth : d = αϕ

width : w = βϕ

resolution : r = γϕ

subject to α · β2 · γ2 ≈ 2 and α ≥ 1, β ≥ 1, γ ≥ 1
EfficientNet-B7:

• 84% ImageNet top-1 accuracy

• 8.4x smaller, 6.1x faster than best CNN

9.2.4 Vision Transformers (ViT)
Motivation: Apply transformer architecture to vision.

Architecture
Image Preprocessing:

1. Split image into patches (e.g., 16x16)

2. Flatten each patch into vector

3. Linear projection to embedding dimension

4. Add positional embeddings

5. Prepend [CLS] token

For image of size 224× 224 with 16× 16 patches:
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• Number of patches: (224/16)2 = 196

• Input sequence length: 196 + 1 = 197 (including [CLS])

Transformer Encoder:
• Standard transformer blocks (self-attention + MLP)

• MLP head on [CLS] token for classification

Mathematical Formulation:

z0 = [xclass;x
1
pE; . . . ;xN

p E] +Epos

z′l = MSA(LN(zl−1)) + zl−1

zl = MLP(LN(z′l)) + z′l

y = LN(z0L)

where MSA = Multi-head Self-Attention, LN = Layer Norm.
Results:
• ViT-Huge: 88.5% ImageNet accuracy

• Requires large-scale pre-training (JFT-300M dataset)

• Matches or exceeds CNNs when pre-trained on large data

Advantages:
• Unified architecture for vision and language

• Scales well with data and compute

• Less inductive bias than CNNs

Disadvantages:
• Requires more data than CNNs

• Quadratic complexity in sequence length

• Less effective without pre-training

9.3 Object Detection
9.3.1 Problem Formulation
Input: Image I

Output: Set of bounding boxes and class labels

{(xi, yi, wi, hi, ci)}Ni=1

where (xi, yi) is box center, (wi, hi) is size, ci is class.
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9.3.2 Evaluation Metrics
Intersection over Union (IoU)

IoU =
Area of Overlap
Area of Union

Usage: Threshold (e.g., IoU > 0.5) determines if detection is correct.

Mean Average Precision (mAP)

Procedure:

1. Compute precision-recall curve for each class

2. Average Precision (AP) = area under PR curve

3. mAP = mean of AP across all classes

Common metrics:

• mAP@0.5: IoU threshold 0.5

• mAP@[0.5:0.95]: Average over IoU thresholds from 0.5 to 0.95

9.3.3 Two-Stage Detectors
R-CNN (Region-based CNN)

Pipeline:

1. Extract 2000 region proposals (Selective Search)

2. Warp each proposal to fixed size

3. Pass through CNN (AlexNet) to extract features

4. Classify with SVM

5. Refine bounding box with regressor

Problems:

• Very slow (CNN for each proposal)

• Multiple stages, not end-to-end
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Fast R-CNN
Key Innovation: Share computation across proposals.

Pipeline:
1. Pass entire image through CNN → feature map

2. Extract region proposals

3. RoI pooling: extract fixed-size features for each proposal

4. FC layers for classification and bbox regression
RoI Pooling:
• Divide region into grid (e.g., 7x7)

• Max pool each grid cell

• Result: fixed-size feature vector
Improvement: 10x faster than R-CNN.

Faster R-CNN
Key Innovation: Replace Selective Search with learned Region Proposal
Network (RPN).

Region Proposal Network:
• Slide small network over conv feature map

• At each position, predict k anchor boxes

• For each anchor: objectness score + box refinement
Anchor Boxes:
• Pre-defined boxes of various scales and aspect ratios

• Typically: 3 scales × 3 aspect ratios = 9 anchors per location
Training:
• Multi-task loss: classification + bbox regression

• Positive samples: IoU > 0.7 with ground truth

• Negative samples: IoU < 0.3
Full Pipeline:

1. Feature extraction (ResNet backbone)

2. RPN generates proposals

3. RoI pooling + classification head
Performance: 10 FPS on GPU, high accuracy.
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9.3.4 One-Stage Detectors
YOLO (You Only Look Once)
Key Idea: Direct prediction, no proposals.

Architecture:
1. Divide image into S × S grid

2. Each grid cell predicts B bounding boxes

3. Each box: (x, y, w, h, confidence)

4. Each cell also predicts class probabilities

Output Tensor: S × S × (B · 5 + C)
For YOLO v1: 7× 7× 30 (S=7, B=2, C=20)
Loss Function:

L = λcoord
∑

bbox errors+
∑

objectness errors+λnoobj
∑

no-object errors+
∑

class errors

Advantages:
• Very fast (45+ FPS)

• Sees entire image (better context than R-CNN)

• Single network, end-to-end

Disadvantages:
• Lower accuracy than two-stage

• Struggles with small objects

• Strong spatial constraints (one grid cell = one object)

SSD (Single Shot MultiBox Detector)
Key Innovation: Multi-scale feature maps for detection.

Architecture:
• Base network (VGG) produces feature maps

• Add extra conv layers with decreasing resolution

• Predict from multiple feature map layers

• Early layers: detect small objects

• Later layers: detect large objects

Default Boxes: Similar to anchors in Faster R-CNN.
Performance: Balances speed and accuracy.
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RetinaNet
Key Innovation: Focal Loss to handle class imbalance.

Problem: In one-stage detectors, most anchors are background (easy
negatives).

Focal Loss:
FL(pt) = −(1− pt)γ log(pt)

where pt is model’s confidence for true class.
Effect:

• Well-classified examples (high pt): small loss

• Hard examples (low pt): large loss

• Focuses training on hard examples

Result: One-stage detector matching two-stage accuracy.

9.3.5 Modern Detectors
DETR (Detection Transformer)
Key Idea: Treat detection as set prediction problem.

Architecture:

• CNN backbone → flatten feature map

• Transformer encoder-decoder

• N object queries (learned embeddings)

• Decoder outputs N predictions

• Bipartite matching loss (Hungarian algorithm)

No Hand-Designed Components:

• No anchors

• No NMS (non-maximum suppression)

• End-to-end differentiable

9.4 Semantic Segmentation
9.4.1 Problem Formulation
Input: Image I ∈ RH×W×3

Output: Label map Y ∈ {1, . . . , C}H×W

Assign class label to every pixel.
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9.4.2 Fully Convolutional Networks (FCN)
Key Idea: Replace FC layers with conv layers.

Architecture:
1. Encoder: Conv layers to extract features (downsampling)

2. Decoder: Upsampling to original resolution
Upsampling Methods:
• Unpooling: Remember max pooling indices, place values back

• Transposed Convolution: Learnable upsampling

• Bilinear Interpolation: Simple, non-learnable
Skip Connections: Combine deep, semantic information with shallow,

spatial information.

9.4.3 U-Net
Popular architecture for medical image segmentation.

Structure:
• Encoder (contracting path): Conv + pooling

• Decoder (expanding path): Upconv + conv

• Skip connections: Concatenate encoder features with decoder
U-Shape: Symmetric encoder-decoder.
Benefits:
• Works with small datasets

• Precise localization via skip connections

• Fast training and inference

9.4.4 DeepLab Series
Atrous (Dilated) Convolution
Problem: Repeated downsampling loses spatial resolution.

Solution: Dilated convolution increases receptive field without down-
sampling.

Atrous Convolution:
y[i] =

∑
k

x[i+ r · k]w[k]

where r is dilation rate.
Example: 3x3 kernel with r = 2 has receptive field of 7x7.
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Atrous Spatial Pyramid Pooling (ASPP)
Idea: Capture multi-scale context with parallel atrous convolutions.

Structure:

• 1x1 conv

• 3x3 atrous conv with rate 6

• 3x3 atrous conv with rate 12

• 3x3 atrous conv with rate 18

• Global average pooling

• Concatenate all outputs

9.4.5 Evaluation Metrics
Pixel Accuracy:

Acc =

∑
i nii∑
i ti

Mean IoU:

mIoU =
1

C

C∑
c=1

ncc∑
j ncj +

∑
j njc − ncc

where nij is number of pixels of class i predicted as class j.

9.5 Instance Segmentation
9.5.1 Problem Formulation
Goal: Detect and segment each object instance separately.

Example: Multiple people in image should have separate masks.

9.5.2 Mask R-CNN
Extension of Faster R-CNN: Add mask prediction branch.

Architecture:

1. Backbone CNN + FPN (Feature Pyramid Network)

2. RPN for proposals

3. RoIAlign (improvement over RoI pooling)

4. Three parallel branches:
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• Classification head
• Bbox regression head
• Mask prediction head (FCN)

RoIAlign:

• Problem with RoI pooling: quantization causes misalignment

• Solution: Bilinear interpolation for precise alignment

• Critical for mask accuracy

Mask Head:

• Small FCN applied to each RoI

• Predicts binary mask for each class

• Output: C ×m×m (e.g., 80 × 28 × 28 for COCO)

Loss:
L = Lcls + Lbox + Lmask

where mask loss is average binary cross-entropy per pixel.
Performance: State-of-the-art on COCO instance segmentation.

9.6 Generative Models for Vision
9.6.1 Variational Autoencoders (VAEs)
Goal: Learn latent representation and generate new images.

Architecture:

• Encoder: qϕ(z|x) maps image to latent distribution

• Decoder: pθ(x|z) reconstructs image from latent code

Training Objective (ELBO):

L = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z))

Reparameterization Trick:

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I)

Allows backpropagation through sampling.
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9.6.2 Generative Adversarial Networks (GANs)
Components:

• Generator G: z→ x

• Discriminator D: x→ [0, 1]

Objective:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))]

Deep Convolutional GAN (DCGAN)

Architecture Guidelines:

• Replace pooling with strided convolutions

• Use batch normalization

• Remove fully connected layers

• Use ReLU in generator (except output: tanh)

• Use LeakyReLU in discriminator

Conditional GAN (cGAN)

Idea: Condition generation on additional information (class label, text).

min
G

max
D

Ex[logD(x|c)] + Ez[log(1−D(G(z|c)|c))]

Applications: Image-to-image translation, text-to-image.

StyleGAN

Key Innovation: Style-based generator architecture.
Features:

• Mapping network: z→ w (disentangled latent space)

• Adaptive instance normalization (AdaIN) injects style

• Progressive growing

• Style mixing

Results: Photorealistic face generation, controllable attributes.
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9.6.3 Diffusion Models
Key Idea: Learn to reverse a diffusion process that gradually adds noise.

Forward Process (Diffusion):

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI)

Reverse Process (Denoising):

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

Training: Predict noise added at each step.
Advantages over GANs:

• Stable training

• High sample quality

• Mode coverage

Applications:

• Image generation (DALL-E 2, Stable Diffusion, Midjourney)

• Text-to-image synthesis

• Image editing and inpainting

9.7 Multi-Modal Learning
9.7.1 CLIP (Contrastive Language-Image Pre-training)
Goal: Learn joint embedding space for images and text.

Architecture:

• Image encoder (ResNet or ViT)

• Text encoder (Transformer)

• Project both to shared embedding space

Training:

• Dataset: 400M image-text pairs from internet

• Contrastive loss: maximize similarity for correct pairs, minimize for
incorrect
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Matrix Form:

L = − 1

N

N∑
i=1

log
exp(sim(Ii,Ti)/τ)∑N
j=1 exp(sim(Ii,Tj)/τ)

Zero-Shot Classification:

1. Encode text prompts for all classes

2. Encode test image

3. Classify based on highest similarity

Capabilities:

• Zero-shot classification

• Image-text retrieval

• Foundation for DALL-E 2, Stable Diffusion

9.8 3D Vision
9.8.1 Depth Estimation
Monocular Depth: Predict depth from single image.

Methods:

• Supervised: Train on RGB-D pairs

• Self-supervised: Use stereo pairs or video sequences

Architecture: Encoder-decoder (similar to segmentation).

9.8.2 3D Object Detection
Input: Point cloud or multi-view images.

Output: 3D bounding boxes + orientations.
PointNet:

• Processes unordered point sets

• Permutation invariant via symmetric function (max pooling)

• Used for classification and segmentation
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9.8.3 Neural Radiance Fields (NeRF)
Goal: Synthesize novel views of 3D scenes.

Representation: Continuous function F : (x,d)→ (c, σ)

• Input: 3D location x, viewing direction d

• Output: Color c, density σ

Implementation: MLP with positional encoding.
Rendering: Volume rendering along rays.
Training: Photometric loss (minimize difference between rendered and

real images).
Results: Photorealistic novel view synthesis.

9.9 Problems and Solutions
Standard Problems
Exercise 9.1. Receptive Field with Dilated Convolution: Calculate
the receptive field of a network with three 3×3 convolutional layers with
dilation rates 1, 2, and 4 respectively (no padding, stride 1).

Solution: Receptive field formula for dilated convolution:

rout = rin + (k − 1)× d× sprod

where k is kernel size, d is dilation rate, sprod is product of all previous
strides.

Layer by layer:
Layer 1: 3×3 conv, dilation=1, stride=1

• Input receptive field: 1

• r1 = 1 + (3− 1)× 1× 1 = 1 + 2 = 3

Layer 2: 3×3 conv, dilation=2, stride=1

• Effective kernel size: 3 + (3− 1)× (2− 1) = 3 + 2 = 5

• But using formula: r2 = 3 + (3− 1)× 2× 1 = 3 + 4 = 7

Layer 3: 3×3 conv, dilation=4, stride=1

• r3 = 7 + (3− 1)× 4× 1 = 7 + 8 = 15

Final receptive field: 15× 15
Verification by counting:

• Layer 1: Sees 3×3 region
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• Layer 2: Each output neuron sees 3 positions with spacing 2, covering
5 input positions, but those inputs came from 3×3 regions → (3-1)×2
+ 3 = 7

• Layer 3: Similar reasoning → 15

Comparison with standard convolution:
Three 3×3 conv layers without dilation: r = 1 + 2 + 2 + 2 = 7
With dilation [1,2,4]: r = 15
Benefit: More than 2x larger receptive field with same computation! ■

Exercise 9.2. IoU Calculation: Given two bounding boxes:

• Box A: (x1 = 50, y1 = 50, x2 = 150, y2 = 150)

• Box B: (x1 = 100, y1 = 100, x2 = 200, y2 = 200)

Calculate the IoU.

Solution: Step 1: Calculate intersection
Intersection coordinates:
• xint

1 = max(50, 100) = 100

• yint
1 = max(50, 100) = 100

• xint
2 = min(150, 200) = 150

• yint
2 = min(150, 200) = 150

Intersection area:

Aint = (150− 100)× (150− 100) = 50× 50 = 2, 500

Step 2: Calculate areas
Box A area:

AA = (150− 50)× (150− 50) = 100× 100 = 10, 000

Box B area:

AB = (200− 100)× (200− 100) = 100× 100 = 10, 000

Step 3: Calculate union

Aunion = AA +AB −Aint = 10, 000 + 10, 000− 2, 500 = 17, 500

Step 4: Calculate IoU

IoU =
Aint
Aunion

=
2, 500

17, 500
=

1

7
≈ 0.143

Interpretation: IoU of 0.143 is quite low. For object detection:
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• IoU > 0.5: Typically considered a valid detection

• IoU > 0.7: Good detection

• IoU > 0.9: Excellent detection

This detection would not be considered correct by most metrics. ■

Advanced Problems
Exercise 9.3. Focal Loss Analysis:

[label=(c)]

1. Plot focal loss FL(p) = −(1− p)γ log p for γ ∈ {0, 0.5, 1, 2, 5} as function
of p ∈ [0, 1].

2. Explain how γ affects the relative importance of easy vs. hard exam-
ples.

3. Why is focal loss particularly effective for one-stage detectors?

Solution:
[label=(i)]

1. Focal Loss Behavior:
Formula: FL(p) = −(1− p)γ log p
Key Points:
For γ = 0: FL(p) = − log p (standard cross-entropy)
For p→ 1 (well-classified):

• γ = 0: FL ≈ 0 (small but non-zero)
• γ = 2: FL ≈ 0 (much smaller)
• γ = 5: FL ≈ 0 (nearly zero)

For p = 0.5 (uncertain):

• γ = 0: FL = − log(0.5) = 0.693

• γ = 2: FL = −(0.5)2 × 0.693 = 0.173

• γ = 5: FL = −(0.5)5 × 0.693 = 0.022

For p = 0.1 (hard example):

• γ = 0: FL = − log(0.1) = 2.303

• γ = 2: FL = −(0.9)2 × 2.303 = 1.864

• γ = 5: FL = −(0.9)5 × 2.303 = 1.357
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Observation: As γ increases, loss for well-classified examples (p close
to 1) decreases dramatically, while loss for hard examples decreases
more slowly.

2. Effect of γ on Easy vs. Hard Examples:
Modulating Factor: (1− p)γ

For easy examples (p ≈ 1, e.g., p = 0.95):

• γ = 0: weight = 1.0
• γ = 2: weight = (0.05)2 = 0.0025

• γ = 5: weight = (0.05)5 = 3.125× 10−7

Relative contribution reduced by factor of 400,000!
For hard examples (p = 0.5):

• γ = 0: weight = 1.0
• γ = 2: weight = (0.5)2 = 0.25

• γ = 5: weight = (0.5)5 = 0.03125

Relative contribution reduced by factor of only 32.
Effect: Focal loss down-weights easy examples more aggressively than
hard examples, focusing training on difficult cases.
Typical value: γ = 2 works well in practice.

3. Why Focal Loss Helps One-Stage Detectors:
Problem in One-Stage Detectors:

• Dense sampling: 10K-100K candidate boxes per image
• Extreme class imbalance: 99.9% negative (background)
• Most negatives are easy (clearly not objects)

With Standard Cross-Entropy:

• Easy negatives dominate loss despite low individual loss
• Gradient signal overwhelmed by easy examples
• Model doesn’t learn to handle hard examples
• Results in poor performance

Example:

• 100,000 negative samples with p = 0.999 (very confident)
• Each contributes: − log(0.999) ≈ 0.001

• Total: 100, 000× 0.001 = 100
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• 100 hard positive samples with p = 0.5

• Each contributes: − log(0.5) ≈ 0.693

• Total: 100× 0.693 = 69.3

• Easy negatives dominate despite being well-classified!

With Focal Loss (γ = 2):

• Easy negatives: 100, 000× (0.001)2 × 0.001 ≈ 0.0001

• Hard positives: 100× (0.5)2 × 0.693 = 17.3

• Now hard examples dominate!

Two-Stage Detectors Don’t Need Focal Loss:

• Region proposals pre-filter easy negatives
• Only 1000 candidates per image
• Better class balance through sampling
• Hard negative mining

Impact: RetinaNet with focal loss achieved one-stage detector SOTA,
matching two-stage accuracy.

■

9.10 Conclusion
Computer Vision has been transformed by deep learning, achieving human-
level and beyond performance on many tasks. Key developments include:

Architecture Evolution:

• CNNs with increasing depth and efficiency (AlexNet to EfficientNet)

• Residual connections enabling very deep networks

• Transformers entering vision (ViT, DETR)

• Hybrid CNN-Transformer architectures

Task Diversity:

• Classification, detection, segmentation reaching maturity

• Generative models producing photorealistic images

• Multi-modal learning bridging vision and language

• 3D understanding advancing rapidly
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Practical Impact:

• Autonomous vehicles

• Medical image analysis

• Augmented reality

• Content creation and editing

• Industrial inspection

Open Challenges:

• Robustness to distribution shift

• Few-shot learning with limited data

• 3D scene understanding

• Video understanding and reasoning

• Efficient models for edge devices

The field continues to evolve with foundation models, self-supervised
learning, and integration with other modalities pushing boundaries.



Chapter 10

AI Systems and Ethics

10.1 Introduction
Throughout the previous chapters, we have developed a comprehensive un-
derstanding of AI algorithms, architectures, and theoretical foundations.
However, building AI models in research environments represents only one
facet of the field. The true challenge lies in deploying these systems in the
real world, where they must operate reliably, safely, and ethically while
serving diverse populations and stakeholders.

This chapter bridges the gap between theory and practice, examining
both the technical infrastructure required to deploy AI systems at scale and
the profound ethical questions that arise when AI intersects with society.
We begin by exploring the operational aspects of AI systems: how do we take
a model from a Jupyter notebook to a production system serving millions of
users? How do we train models that are too large to fit on a single GPU? How
do we deploy AI on devices with severe computational constraints? These
questions fall under the umbrella of MLOps and systems engineering.

Beyond the technical challenges, we must confront the reality that AI
systems are not value-neutral tools. They encode assumptions, reflect bi-
ases present in training data, and can perpetuate or amplify societal in-
equities when deployed carelessly. A facial recognition system that works
flawlessly for one demographic group but fails for another, a hiring algo-
rithm that discriminates against protected classes, or a language model
that generates harmful content are not merely technical failures but ethi-
cal failures with real consequences for individuals and communities.

The chapter is organized into two major parts. Part A focuses on AI
systems in practice, covering MLOps pipelines, distributed training strate-
gies for scaling to massive models and datasets, techniques for compressing
models for edge deployment, and an overview of robotics as embodied AI
systems that must integrate perception, planning, and control. Part B ad-
dresses ethics and safety, exploring bias and fairness, interpretability and

241
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explainability, privacy-preserving machine learning, AI safety and align-
ment, environmental impacts, and broader societal implications. Through-
out, we emphasize that building responsible AI systems requires not just
technical competence but also ethical reasoning, stakeholder engagement,
and ongoing vigilance.

10.2 MLOps and Deployment
10.2.1 The Machine Learning Lifecycle
Traditional software engineering has well-established practices for develop-
ment, testing, and deployment. Code is version-controlled, tested through
unit and integration tests, deployed through standardized pipelines, and
monitored for uptime and latency. The logic is deterministic: given the
same inputs, the system produces the same outputs, and bugs can be traced
to specific lines of code.

Machine learning systems introduce fundamental differences that re-
quire new engineering practices. Unlike traditional software where behav-
ior is explicitly programmed, ML systems learn their behavior from data.
This means the "code" consists not just of the model architecture but also the
training data, hyperparameters, random seeds, and training procedures. A
model that performs well today may degrade tomorrow as the data distri-
bution shifts, even if no code changes. Testing cannot rely solely on unit
tests because the learned function is implicit rather than explicit.

These differences manifest throughout the ML lifecycle. Data must be
collected, cleaned, validated, and versioned alongside code. Features must
be engineered and their transformations must be consistent between train-
ing and serving. Models must be trained, which may take days or weeks
and consume significant computational resources. The trained model must
be evaluated not just on aggregate metrics but across different subpopula-
tions to detect disparate performance. Deployment requires serving predic-
tions efficiently, often with strict latency requirements. After deployment,
the system must be monitored for performance degradation, data drift, and
fairness issues. When problems arise, the system may need to be retrained
or updated, creating a continuous cycle.

Consider a concrete example: a recommendation system for an e-commerce
platform. The data includes user behavior logs, which grow by millions of
records daily. Features might include user demographics, browsing his-
tory, purchase history, and item attributes. The model must be retrained
regularly as user preferences and item catalogs evolve. During deployment,
recommendations must be generated in real-time as users browse, requir-
ing low-latency inference. The system must be monitored for filter bub-
bles, where users see increasingly narrow recommendations, and for bi-
ases, such as systematically under-recommending items to certain demo-
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graphic groups. If metrics decline, engineers must diagnose whether the
issue stems from data quality problems, model staleness, or changes in user
behavior.

This example illustrates why ML systems require specialized infrastruc-
ture and practices, collectively known as MLOps, which we explore in the
following sections.

10.2.2 MLOps Pipeline
Data Management

Data is the foundation of machine learning systems, yet it is often treated
as an afterthought in traditional software engineering curricula. In ML
systems, poor data quality, biases in data collection, or shifts in data dis-
tribution can undermine even the most sophisticated models. Effective
data management requires versioning, validation, and quality monitoring
throughout the system lifecycle.

Data Versioning and Reproducibility:
One of the first challenges in MLOps is reproducibility. If a model per-

forms poorly in production, can we recreate the exact training conditions
to diagnose the issue? This requires versioning not just the code but also
the data. However, unlike code, datasets can be enormous, ranging from
gigabytes to petabytes, making traditional version control systems like Git
impractical.

Specialized tools have emerged to address this challenge. DVC (Data
Version Control) extends Git’s concepts to large datasets, storing lightweight
pointers in Git repositories while keeping actual data in cloud storage or
distributed file systems. Delta Lake, built on Apache Spark, provides ACID
transactions for data lakes, enabling time travel to previous dataset ver-
sions. These tools allow teams to track exactly which data was used to train
each model, facilitating debugging and compliance.

Consider a medical imaging model trained to detect tumors. If the model’s
performance degrades six months after deployment, investigators need to
determine whether the issue stems from changes in imaging equipment,
shifts in patient demographics, or concept drift in tumor presentations.
With proper data versioning, they can compare the current data distribu-
tion against historical training data, identify specific changes, and decide
whether retraining is necessary.

Data Quality and Validation:
Beyond versioning, ML systems require continuous data validation. Train-

ing data may contain errors, outliers, or artifacts that models learn to ex-
ploit. More insidiously, the statistical properties of data may shift over time
in ways that degrade model performance.

Data validation encompasses several types of checks. Schema validation
ensures that expected features are present with correct types, for example,



244 CHAPTER 10. AI SYSTEMS AND ETHICS

verifying that an age field contains integers between 0 and 120 rather than
strings or impossible values. Distribution checks monitor statistical prop-
erties like means, standard deviations, and quantiles, alerting when these
drift significantly from baseline values. Consistency checks identify logi-
cal contradictions, such as a person’s recorded age decreasing over time or
purchase timestamps occurring before account creation.

Tools like Great Expectations provide frameworks for expressing these
validation rules declaratively. For instance, one might specify that a user ID
column should never contain null values, that transaction amounts should
fall within expected ranges, or that the distribution of categorical features
should remain stable within specified bounds. When validation fails, pipelines
can halt before bad data contaminates models.

Handling Data Drift:
Data drift refers to changes in the statistical properties of input data

over time. Unlike model drift, which refers to changes in the relationship
between inputs and outputs, data drift concerns the inputs themselves. For
example, during the COVID-19 pandemic, consumer behavior shifted dra-
matically, causing data drift in numerous commercial ML systems.

Detecting data drift requires statistical methods. For continuous fea-
tures, tests like the Kolmogorov-Smirnov test compare distributions be-
tween baseline and current data. For categorical features, chi-squared tests
assess whether category frequencies have changed significantly. The Popu-
lation Stability Index (PSI) provides a single metric for detecting drift:

PSI =
n∑

i=1

(pi − qi) log
(
pi
qi

)
where pi represents the baseline frequency of bin i and qi represents

the current frequency. PSI values below 0.1 indicate no significant change,
values between 0.1 and 0.2 indicate moderate drift requiring investigation,
and values above 0.2 signal significant drift that likely requires model re-
training.

When drift is detected, organizations must decide how to respond. Op-
tions include retraining the model on recent data, adjusting decision thresh-
olds, or even temporarily reverting to simpler rule-based systems until the
situation stabilizes. The appropriate response depends on the severity of
drift, the cost of retraining, and the risks of degraded performance.

Model Training Pipeline

Training machine learning models, particularly deep neural networks, in-
volves numerous hyperparameters, architecture choices, and random ini-
tialization decisions. A single training run might take hours to weeks, and
practitioners often need to run dozens or hundreds of experiments to find
optimal configurations. Without systematic tracking, this experimentation
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becomes chaotic, making it impossible to reproduce results or understand
what works.

The Need for Experiment Tracking:
Imagine a research team training a computer vision model for medi-

cal diagnosis. They experiment with different architectures (ResNet-50,
ResNet-101, EfficientNet), learning rates (0.001, 0.0001), batch sizes (16,
32, 64), and data augmentation strategies. After weeks of work, they iden-
tify a configuration achieving 95% accuracy. Weeks later, trying to repro-
duce the result for a paper submission, they realize they didn’t record which
exact combination of hyperparameters produced that result. The experi-
ments must be rerun, wasting valuable time and computational resources.

Experiment tracking systems solve this problem by automatically log-
ging all aspects of training runs. Modern MLOps platforms track hyperpa-
rameters, model configurations, training metrics (loss, accuracy, etc.), val-
idation metrics, system metrics (GPU utilization, memory usage, training
time), code versions, data versions, and model artifacts. This comprehen-
sive tracking enables teams to compare experiments systematically, iden-
tify trends, and reliably reproduce results.

MLflow, one of the most popular open-source platforms, provides a clean
API for experiment tracking. During training, developers wrap their code
with MLflow logging calls that record parameters and metrics. For example:

import mlflow

with mlflow.start_run():
# Log hyperparameters
mlflow.log_param("learning_rate", 0.001)
mlflow.log_param("batch_size", 32)
mlflow.log_param("architecture", "resnet50")

# Training loop
for epoch in range(num_epochs):

train_loss = train_epoch(model, train_loader)
val_loss, val_acc = validate(model, val_loader)

# Log metrics for each epoch
mlflow.log_metric("train_loss", train_loss, step=epoch)
mlflow.log_metric("val_loss", val_loss, step=epoch)
mlflow.log_metric("val_accuracy", val_acc, step=epoch)

# Save the trained model
mlflow.pytorch.log_model(model, "model")

This simple instrumentation creates a complete record of the experi-
ment. The MLflow UI then provides visualizations comparing runs, show-
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ing how different hyperparameters affect performance, and enabling filter-
ing and sorting by any tracked metric.

Alternative platforms like Weights & Biases offer enhanced visualiza-
tion capabilities, including real-time training curves, system metrics dash-
boards, and collaborative features for teams. TensorBoard integrates tightly
with TensorFlow, providing rich visualizations of model graphs, distribu-
tions, and embeddings. For enterprise environments, Neptune.ai adds fea-
tures like access control, audit logs, and integration with production sys-
tems.

Model Versioning and Registry:
Experiment tracking records the history of model training, but produc-

tion systems need a way to manage model deployment. A model registry
serves as a central repository where trained models are stored, versioned,
and tracked through their lifecycle stages.

The concept mirrors software version control but with ML-specific con-
cerns. While code versioning tracks changes to algorithms, model version-
ing tracks specific trained instances, each potentially trained on different
data with different hyperparameters. A single codebase might produce hun-
dreds of model versions as practitioners experiment and retrain.

Model registries typically define lifecycle stages: Development models
are actively being trained and evaluated, Staging models are being tested in
pre-production environments, Production models are actively serving pre-
dictions in production, and Archived models are preserved for compliance
or historical analysis but no longer actively used.

Each registered model includes metadata beyond just the model weights:
performance metrics across various evaluation sets, information about train-
ing data provenance, code version that trained the model, hyperparameters
and configuration, hardware requirements for inference, and approval sta-
tus and audit logs tracking who deployed the model and when.

This infrastructure enables critical operational capabilities. Teams can
perform A/B testing by serving different model versions to different user
segments. If a new model causes issues in production, teams can instantly
rollback to a previous version. For regulated industries like healthcare or
finance, audit trails document exactly which model version made each pre-
diction, facilitating compliance and investigation of individual decisions.

Semantic versioning conventions help communicate the nature of up-
dates. A version number like 2.3.1 indicates the major version (2), minor
version (3), and patch version (1). Major version increments signal breaking
changes, such as changes to input or output formats that require updates to
dependent systems. Minor version increments indicate new features, like
additional output fields that existing systems can ignore. Patch versions
represent bug fixes or performance improvements that don’t change inter-
faces.
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Model Deployment

The transition from a trained model to a production system serving real
users represents one of the most critical and challenging phases in the ML
lifecycle. A model that performs beautifully on test data in a research en-
vironment can fail catastrophically in production due to latency constraints,
hardware limitations, or unexpected input distributions. Deployment strate-
gies must balance performance, reliability, risk, and operational complexity.

Deployment Patterns and Their Trade-offs:
Machine learning inference can be organized along a spectrum from

batch processing to real-time serving, each appropriate for different use
cases. Batch inference processes large volumes of data offline, generat-
ing predictions that are stored and retrieved later. Consider a movie rec-
ommendation system that generates personalized suggestions for all users
overnight. The system processes millions of users, ranks thousands of movies
for each, and stores the results in a database. When users log in the next
day, recommendations are retrieved instantly from the database rather than
computed on demand. This approach offers several advantages: predictions
can be generated efficiently using large-batch processing optimized for GPU
utilization, errors can be detected and corrected before users see them, and
serving is extremely fast since recommendations are pre-computed. How-
ever, batch inference cannot respond to immediate user actions, if a user
watches a movie, recommendations won’t update until the next batch run,
which might be hours or days away.

Online inference, in contrast, generates predictions in real-time as re-
quests arrive. When a user searches for products, the system immediately
processes the query, evaluates millions of items, and returns personalized
results ranked by relevance, all within milliseconds. This pattern is essen-
tial for interactive applications where immediate feedback matters: search
engines, chatbots, fraud detection systems, and real-time bidding for online
advertising all require online inference. The primary challenge is latency:
users expect responses in tens to hundreds of milliseconds, requiring highly
optimized models and serving infrastructure. Additional complexities in-
clude handling variable load (traffic may spike unpredictably), maintaining
high availability (the system must remain operational even when individ-
ual servers fail), and efficient resource utilization (running servers 24/7 is
expensive).

Edge deployment represents a third pattern where models run directly
on user devices, smartphones, IoT sensors, vehicles, or embedded systems,
rather than on remote servers. Edge inference offers compelling advantages
for specific applications. First, it eliminates network latency entirely: a
smartphone can run a face recognition model in milliseconds without round-
trip communication. Second, it preserves privacy: sensitive data like pho-
tos, voice recordings, or health metrics never leave the device. Third, it en-
ables offline operation: navigation, speech recognition, and camera features
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work without internet connectivity. However, edge deployment imposes se-
vere constraints. Mobile devices have limited memory (typically 1-4GB ac-
cessible to a single app), constrained compute capability (CPUs rather than
GPUs, or small neural processing units), and power budgets (excessive com-
putation drains batteries). These constraints necessitate aggressive model
compression, which we discuss in Section 10.3.

Deployment Strategies for Risk Management:
Deploying new models carries inherent risks. A model might perform

well on test data but degrade on production traffic due to distribution shift,
subtle bugs, or unexpected edge cases. Production deployment strategies
aim to detect and mitigate issues before they affect all users.

Blue-green deployment maintains two identical production environments,
conventionally called "blue" and "green." At any time, one environment serves
live traffic while the other remains idle. To deploy a new model, opera-
tors prepare it in the idle environment, run comprehensive tests, and then
switch traffic from the active environment to the updated one. This ap-
proach enables instant rollback: if issues emerge, traffic switches back to
the previous environment within seconds. The main drawback is cost, main-
taining duplicate infrastructure doubles resource requirements.

Canary deployment takes a more gradual approach, deploying new mod-
els to a small fraction of traffic initially and progressively increasing expo-
sure. The process typically proceeds in stages: deploy the new model to
5% of traffic, monitor metrics for anomalies (increased errors, higher la-
tency, degraded performance), gradually increase to 10%, 25%, 50%, and
finally 100% if all metrics remain healthy, or rollback immediately if prob-
lems appear. This strategy provides an early warning system. If the new
model has issues, only a small fraction of users are affected while problems
are detected and diagnosed. However, canary deployment requires careful
planning. The canary group must be representative of the full user popu-
lation, or issues might not manifest until full rollout. Monitoring must be
comprehensive and automated, as manual monitoring across many metrics
is impractical.

A/B testing extends canary deployment to compare model performance
experimentally. Rather than gradually increasing traffic to a new model,
two models run concurrently, serving different randomly assigned user seg-
ments. Careful statistical analysis determines which model performs better
on business metrics like conversion rates, user engagement, or revenue. A/B
testing provides rigorous evidence for deployment decisions but requires
larger sample sizes (more traffic) and longer observation periods to achieve
statistical significance.

Shadow deployment offers the safest introduction for new models. The
production (shadow) model receives copies of all requests and generates
predictions, but these predictions are logged rather than served to users.
Developers compare shadow predictions with actual production predictions
offline, identifying discrepancies and performance differences without user
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impact. Once confidence is established, the shadow model can be promoted
using canary or blue-green strategies. Shadow deployment is ideal for crit-
ical systems where errors could have serious consequences, though it re-
quires infrastructure to handle double the inference load.

10.2.3 Model Serving
REST APIs
Example: FastAPI for Model Serving

from fastapi import FastAPI
from pydantic import BaseModel
import torch

app = FastAPI()
model = torch.load("model.pt")
model.eval()

class PredictionRequest(BaseModel):
features: list[float]

@app.post("/predict")
async def predict(request: PredictionRequest):

with torch.no_grad():
input_tensor = torch.tensor([request.features])
output = model(input_tensor)
prediction = output.argmax().item()

return {"prediction": prediction}

Considerations:

• Input validation

• Error handling

• Authentication and authorization

• Rate limiting

• Logging

Model Optimization for Serving
Quantization:

• Reduce precision: FP32 → FP16 or INT8
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• Benefits: 2-4x speedup, 2-4x memory reduction

• Trade-off: slight accuracy loss (typically <1%)

Post-Training Quantization:

import torch.quantization

# Dynamic quantization (weights only)
quantized_model = torch.quantization.quantize_dynamic(

model, {torch.nn.Linear}, dtype=torch.qint8
)

# Static quantization (weights + activations)
model.qconfig = torch.quantization.get_default_qconfig(’fbgemm’)
torch.quantization.prepare(model, inplace=True)
# Run calibration data
torch.quantization.convert(model, inplace=True)

Knowledge Distillation:

• Train small "student" model to mimic large "teacher"

• Student learns from teacher’s soft outputs

• Retains most performance with fewer parameters

Distillation Loss:

L = αLhard + (1− α)Lsoft

where
Lsoft = KL(pTteacher∥pTstudent)

and T is temperature parameter for softmax.

10.2.4 Monitoring and Maintenance
Model Performance Monitoring
Metrics to Track:

1. Prediction Metrics:

• Accuracy, precision, recall, F1

• AUC-ROC, AUC-PR

• Regression: MAE, RMSE, R2

2. System Metrics:
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• Latency (p50, p95, p99)

• Throughput (requests/second)

• Error rate

• Resource utilization (CPU, memory, GPU)
3. Business Metrics:
• Conversion rate

• User engagement

• Revenue impact

Data Drift Detection
Problem: Input distribution changes over time, degrading model perfor-
mance.

Types of Drift:
1. Covariate Drift (Feature Drift):

P (X) changes, but P (Y |X) stays same
Example: User age distribution shifts older.
2. Prior Probability Drift (Label Drift):

P (Y ) changes, but P (X|Y ) stays same
Example: Fraud rate increases.
3. Concept Drift:

P (Y |X) changes
Example: Spam patterns evolve.
Detection Methods:
Statistical Tests:
• Kolmogorov-Smirnov test: Compare distributions

• Chi-squared test: For categorical features

• Population Stability Index (PSI)
PSI Formula:

PSI =
n∑

i=1

(pi − qi) log
(
pi
qi

)
where pi is baseline frequency, qi is current frequency.
PSI Interpretation:
• PSI < 0.1: No significant change

• 0.1 < PSI < 0.2: Moderate change

• PSI > 0.2: Significant change, investigate
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Continuous Training
Retraining Strategies:

1. Scheduled Retraining:

• Retrain on fixed schedule (daily, weekly, monthly)

• Simple to implement

• May retrain unnecessarily or miss critical changes

2. Performance-Triggered Retraining:

• Retrain when metrics drop below threshold

• Example: If accuracy < 90%, trigger retraining

• More efficient

3. Drift-Triggered Retraining:

• Retrain when drift detected

• Proactive before performance degrades

Online Learning:

• Update model incrementally with new data

• No full retraining needed

• Suitable for: linear models, some neural networks

• Challenges: catastrophic forgetting, stability

10.3 Scalability and Distributed Training
10.3.1 Challenges of Scale
Large Models:

• GPT-4: 1.7 trillion parameters

• Cannot fit in single GPU memory

• Training takes months on single GPU

Large Datasets:

• ImageNet: 1.2M images

• Common Crawl: 250TB+ text
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• Cannot fit in RAM

Solutions:

• Data parallelism

• Model parallelism

• Pipeline parallelism

• Efficient data loading

10.3.2 Data Parallelism
Idea: Replicate model on multiple devices, split data across them.

Synchronous Data Parallelism:

1. Split batch across N GPUs

2. Each GPU computes forward and backward pass

3. Aggregate gradients across GPUs

4. Update model parameters (same on all GPUs)

Gradient Aggregation:

g =
1

N

N∑
i=1

gi

Implementation: PyTorch DDP

import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

# Initialize process group
dist.init_process_group(backend=’nccl’)

# Wrap model
model = DDP(model, device_ids=[local_rank])

# Training loop (same as single GPU)
for batch in dataloader:

loss = model(batch)
loss.backward() # Gradients automatically synced
optimizer.step()

Scaling Efficiency:

• Ideal speedup: N× (N GPUs)
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• Actual: (0.8− 0.95)×N due to communication overhead

• Better with larger batch sizes

Batch Size and Learning Rate:
Linear scaling rule (Goyal et al., 2017):

If batch size multiplied by k, multiply learning rate by k

Example: batch=256, lr=0.1 → batch=2048, lr=0.8

10.3.3 Model Parallelism
Problem: Model too large to fit on single GPU.

Solution: Split model layers across devices.
Simple Model Parallelism:

class ModelParallel(nn.Module):
def __init__(self):

super().__init__()
self.layer1 = nn.Linear(1000, 1000).to(’cuda:0’)
self.layer2 = nn.Linear(1000, 1000).to(’cuda:1’)
self.layer3 = nn.Linear(1000, 10).to(’cuda:2’)

def forward(self, x):
x = self.layer1(x.to(’cuda:0’))
x = self.layer2(x.to(’cuda:1’))
x = self.layer3(x.to(’cuda:2’))
return x

Problem: GPUs idle while waiting (pipeline bubble).
Solution: Pipeline parallelism.

10.3.4 Pipeline Parallelism
Idea: Split batch into microbatches, pipeline through model partitions.

GPipe Algorithm:

1. Split model into K partitions on K devices

2. Split batch into M microbatches (M ≫ K)

3. Forward pass: microbatches flow through pipeline

4. Backward pass: gradients flow back through pipeline

5. Accumulate gradients, update once per batch

Pipeline Schedule:
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Time Step 1: GPU0 processes microbatch 1
Time Step 2: GPU0 → MB2, GPU1 → MB1
Time Step 3: GPU0 → MB3, GPU1 → MB2, GPU2 → MB1
...

Bubble Overhead:

Bubble fraction =
K − 1

M

For K = 4 partitions, M = 16 microbatches: Bubble = 3/16 = 18.75%
Trade-off: More microbatches → less bubble, but more memory for ac-

tivations.

10.3.5 3D Parallelism
Megatron-LM (NVIDIA): Combines all three parallelism types.

Dimensions:

• Data parallelism: Split data

• Pipeline parallelism: Split layers

• Tensor parallelism: Split individual layers

Tensor Parallelism:

• Split weight matrices across devices

• For transformer attention: split heads across GPUs

• Requires more frequent communication

Example Configuration:

• 512 GPUs total

• Data parallel: 64 groups

• Pipeline parallel: 8 stages

• Tensor parallel: 1 (within stage)

Result: Train 1T parameter model efficiently.
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10.3.6 Efficient Data Loading
Bottleneck: GPU waiting for data from disk/network.

Solutions:
1. Prefetching:

• Load next batch while GPU processes current batch

• PyTorch: num_workers > 0 in DataLoader

2. Data Caching:

• Keep frequently accessed data in RAM

• Use SSD instead of HDD

3. Data Format Optimization:

• Use efficient formats: TFRecord, WebDataset, Parquet

• Compress data

• Store preprocessed features

4. Sharding:

• Split dataset across multiple files

• Each worker reads different shard

• Reduces I/O contention

10.4 Edge AI and Model Compression
10.4.1 Edge Deployment Constraints
Why Edge AI:

• Low latency (no network round-trip)

• Privacy (data stays on device)

• Offline operation

• Reduced bandwidth

Constraints:

• Limited memory: 1-4GB RAM

• Limited compute: CPU only, small GPU/NPU

• Battery life



10.4. EDGE AI AND MODEL COMPRESSION 257

• Storage: 100MB-1GB for model
Target Devices:
• Smartphones, tablets

• IoT devices

• Embedded systems

• Drones, robots

10.4.2 Model Compression Techniques
Pruning
Idea: Remove unnecessary weights/neurons.

Types:
1. Magnitude Pruning:
• Remove weights with smallest absolute value

• Assumption: small weights contribute little
Unstructured Pruning:
• Prune individual weights

• Results in sparse matrices

• Requires sparse matrix operations for speedup
Structured Pruning:
• Prune entire channels, filters, or layers

• Maintains dense operations

• Easier to deploy, guaranteed speedup
Pruning Algorithm:

1. Train full model

2. Identify weights to prune (e.g., smallest 50%)

3. Set pruned weights to zero

4. Fine-tune remaining weights

5. Optional: Iterate (iterative pruning)
Lottery Ticket Hypothesis:
Dense networks contain sparse subnetworks (winning tickets) that, when

trained in isolation from initialization, can match full network performance.
Implication: Pruning + retraining can maintain accuracy even at high

sparsity (90%+).
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Quantization (Revisited)
Quantization-Aware Training (QAT):

• Simulate quantization during training

• Model learns to be robust to quantization

• Better accuracy than post-training quantization
Fake Quantization:

x̂ = round
(x
s

)
· s

where s is scale factor.
During training: forward pass uses x̂, backward pass uses straight-

through estimator.
Extreme Quantization:
Binary Networks:
• Weights: {−1,+1}

• 32x memory reduction

• Very fast (XNOR operations)

• Significant accuracy drop
Ternary Networks:
• Weights: {−1, 0,+1}

• Slightly better accuracy than binary

Low-Rank Factorization
Idea: Approximate weight matrix with low-rank factorization.

For weight matrix W ∈ Rm×n:
W ≈ UV T

where U ∈ Rm×r, V ∈ Rn×r, and r ≪ min(m,n).
Parameter Reduction:

Original: mn, Factorized: r(m+ n)

Example: m = n = 1000, r = 100

• Original: 1M parameters

• Factorized: 200K parameters

• 5x reduction
Method: SVD decomposition, then fine-tune.
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Neural Architecture Search (NAS)
Goal: Automatically find efficient architectures.

MobileNet: Manually designed efficient architecture.
Key Component: Depthwise Separable Convolution
Standard convolution: DK ×DK × Cin × Cout parameters
Depthwise separable:
• Depthwise: DK ×DK × Cin

• Pointwise: 1× 1× Cin × Cout

• Total: D2
KCin + CinCout

Reduction Factor:
1

Cout
+

1

D2
K

For DK = 3, Cout = 256: reduction ≈ 8-9x
EfficientNet: NAS with compound scaling (covered in Chapter 9).

10.4.3 Model Optimization Frameworks
TensorFlow Lite:

• Convert TensorFlow models to mobile format

• Supports quantization, pruning

• Optimized kernels for ARM

• Platform: Android, iOS, embedded Linux
PyTorch Mobile:
• Deploy PyTorch models on mobile

• TorchScript for model serialization

• Quantization support
ONNX (Open Neural Network Exchange):
• Framework-agnostic model format

• Convert between TensorFlow, PyTorch, etc.

• ONNX Runtime for optimized inference
TensorRT (NVIDIA):
• Optimize models for NVIDIA GPUs

• Layer fusion, precision calibration

• Significant speedup for inference
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10.5 Robotics and Embodied AI
10.5.1 Overview of Robotics
Definition: Robotics combines perception, planning, and control to enable
autonomous physical agents.

Key Components:

• Perception: Understand environment from sensors

• Planning: Decide what actions to take

• Control: Execute actions with actuators

Sensors:

• Cameras (RGB, depth)

• Lidar (laser range finding)

• IMU (inertial measurement unit)

• Touch sensors

• Proprioceptive sensors (joint angles, torques)

Actuators:

• Motors (rotary, linear)

• Grippers, hands

• Wheels, legs

10.5.2 Perception for Robotics
Computer Vision Tasks:

• Object detection and recognition

• Semantic segmentation

• Depth estimation

• Pose estimation

• SLAM (Simultaneous Localization and Mapping)

Example: Autonomous Driving Perception
Inputs:

• Multiple cameras (front, sides, rear)



10.5. ROBOTICS AND EMBODIED AI 261

• Lidar point clouds

• Radar

• GPS, IMU

Outputs:

• Detected objects (cars, pedestrians, cyclists)

• Lane markings

• Traffic signs

• Drivable area

• 3D bounding boxes

Multi-Sensor Fusion:
Combine information from multiple sensors for robust perception.
Early Fusion: Combine raw sensor data before processing.
Late Fusion: Process each sensor separately, combine results.
Challenge: Sensor calibration, synchronization, handling sensor fail-

ures.

10.5.3 Motion Planning
Goal: Find path from start to goal avoiding obstacles.

Classical Planning Algorithms
Configuration Space (C-space):

• Space of all robot configurations

• For robot arm: joint angles

• For mobile robot: (x, y, θ)

Obstacles in C-space:

• Configurations where robot collides

• Free space: collision-free configurations

A* Search:

• Graph search algorithm

• Cost function: f(n) = g(n) + h(n)

• g(n): cost from start to n
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• h(n): heuristic (estimated cost from n to goal)

• Optimal if heuristic is admissible

Rapidly-Exploring Random Trees (RRT):

• Sampling-based algorithm

• Incrementally build tree by sampling random configurations

• Bias towards unexplored regions

• Probabilistically complete

RRT Algorithm:

1. Initialize tree with start configuration
2. Loop:

a. Sample random configuration q_rand
b. Find nearest node q_near in tree
c. Extend from q_near towards q_rand by step size
d. If collision-free, add new node to tree
e. If goal reached, return path

RRT*: Variant that rewires tree for optimality.

Learning-Based Planning

Imitation Learning:

• Learn policy from expert demonstrations

• Behavioral cloning: supervised learning

• Challenge: distribution shift

Reinforcement Learning:

• Learn policy through trial and error

• Reward function guides learning

• Challenges: sample efficiency, safety

Model Predictive Control (MPC):

• Predict future states using learned model

• Optimize actions over horizon

• Re-plan at each time step
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10.5.4 Robot Control
Goal: Execute planned actions accurately.

Low-Level Control
PID Control:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt

where e(t) = r(t)− y(t) is error between reference and output.
Components:

• Proportional: respond to current error

• Integral: eliminate steady-state error

• Derivative: dampen oscillations

Tuning: Set gains Kp, Ki, Kd for desired performance.

High-Level Control
Inverse Kinematics:

• Given desired end-effector pose, find joint angles

• For robot arm with n joints and 6-DOF end-effector

• May have multiple solutions or no solution

Jacobian-Based Control:

ẋ = J(q)q̇

where x is end-effector pose, q is joint angles, J is Jacobian.
Inverse:

q̇ = J†(q)ẋ

where J† is pseudoinverse.

10.5.5 Case Study: Autonomous Driving
Levels of Autonomy (SAE):

• Level 0: No automation

• Level 1: Driver assistance (cruise control)

• Level 2: Partial automation (lane keeping + adaptive cruise)
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• Level 3: Conditional automation (can disengage)

• Level 4: High automation (no human needed in defined areas)

• Level 5: Full automation (anywhere, anytime)

Perception Stack:

• Object detection: cars, pedestrians, cyclists, traffic signs

• Lane detection: drivable area, lane markings

• 3D object tracking: predict future motion

• Localization: precise position on map

Planning Stack:

• Route planning: high-level path (A to B)

• Behavioral planning: lane changes, merging, yielding

• Motion planning: trajectory in space-time

Control Stack:

• Longitudinal control: acceleration, braking

• Lateral control: steering

End-to-End Learning:
Alternative approach: single neural network from sensors to control.
Advantages:

• Simple architecture

• Can learn complex behaviors

Disadvantages:

• Black box, hard to debug

• Safety concerns

• Data hungry

Current trend: Hybrid approaches combining modular and end-to-
end.
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10.6 Bias and Fairness in Machine Learning
Few aspects of modern AI have generated as much concern and controversy
as the potential for machine learning systems to perpetuate or amplify soci-
etal biases and discrimination. Unlike explicit discriminatory policies that
can be identified and challenged, algorithmic bias often operates invisi-
bly, embedded in the patterns learned from historical data and amplified
through automated decision-making at scale. A biased hiring algorithm
can systematically disadvantage thousands of qualified candidates. A bi-
ased criminal justice algorithm can contribute to

disproportionate incarceration. A biased medical algorithm can lead to
unequal healthcare outcomes. Understanding the sources of bias, defin-
ing fairness mathematically, and developing interventions to mitigate un-
fairness are critical challenges at the intersection of machine learning and
ethics.

10.6.1 Sources of Bias
Bias can enter machine learning systems through multiple pathways, often
in subtle ways that are not immediately apparent. Understanding these
sources is the first step toward mitigation.

Historical Bias and Societal Inequities:
Perhaps the most fundamental source of bias is historical bias, where

training data reflects existing societal inequities and prejudices. Machine
learning systems learn patterns from data, and if that data encodes dis-
criminatory practices from the past, the model will learn to perpetuate
them.

Consider a hiring system trained on historical hiring decisions from a
company that historically employed few women in technical roles. The train-
ing data consists of resumes paired with hiring outcomes: which candidates
were hired and which were rejected. A model trained on this data observes
that historically, male candidates with certain characteristics were hired
at higher rates than similar female candidates. Unless explicitly designed
otherwise, the model learns this pattern as a predictive signal. When de-
ployed, it systematically recommends male candidates over equally quali-
fied female candidates, perpetuating historical discrimination even though
no one explicitly programmed sexist rules.

This phenomenon is not hypothetical. In 2018, Amazon discontinued
an AI recruiting tool after discovering it was biased against women. The
system had been trained on resumes submitted to the company over a 10-
year period, predominantly from male applicants in a male-dominated field.
The model learned to penalize resumes containing the word "women’s" (as
in "women’s chess club captain") or graduates of all-women’s colleges. Even
after manual corrections, engineers worried the system would develop new
biased patterns.
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Historical bias extends beyond hiring. Predictive policing systems trained
on historical arrest records reflect patterns of over-policing in certain neigh-
borhoods, often minority communities. If police have historically focused
enforcement efforts in specific areas due to biased practices, arrest data will
show elevated crime rates in those areas regardless of actual crime rates. A
predictive model trained on this data will recommend continued intensive
policing in the same communities, creating a feedback loop that entrenches
racial disparities.

Representation Bias and Dataset Imbalance:
Representation bias occurs when training data does not adequately rep-

resent the diversity of the population on which the model will be deployed.
This is particularly problematic in computer vision and speech recognition
systems.

Facial recognition technology provides a striking example. Multiple stud-
ies have documented that commercial facial recognition systems exhibit
much higher error rates for women and people with darker skin tones com-
pared to light-skinned men. Joy Buolamwini and Timnit Gebru’s landmark
2018 study evaluated three commercial face recognition systems on a di-
verse dataset. For light-skinned males, maximum error rates were 0.8%.
For dark-skinned females, error rates reached 34.7%, more than 40 times
worse. This disparity stems directly from representation bias in training
data. Major face recognition datasets like IJB-A contain more than 75%
male faces and are predominantly light-skinned. Models trained on such
data learn facial features more accurately for overrepresented groups.

The consequences can be severe. Facial recognition systems are increas-
ingly used for security, law enforcement, and even access control. Higher
error rates for certain demographic groups mean individuals from those
groups face greater risks of false accusations, denied access, or surveillance
failures. The technology works for some people but fails for others based on
characteristics like race and gender.

Measurement Bias and Proxy Variables:
Measurement bias arises when the features or labels used to train mod-

els are measured or defined differently across groups, or when they serve
as imperfect proxies for the true construct of interest.

Credit scoring provides an illustration. Credit scores are intended to
measure creditworthiness, the likelihood a borrower will repay a loan. How-
ever, credit scores are influenced by many factors beyond creditworthiness,
including access to credit in the first place. Individuals from communities
historically denied access to banking services may have thin credit files or
no credit history, resulting in low scores not because they are risky borrow-
ers but because they lacked opportunities to build credit. A lending model
using credit scores as a feature will systematically disadvantage these in-
dividuals, perpetuating historical inequities in access to capital.

Similarly, in medical contexts, diagnostic labels may be biased. If cer-
tain conditions are underdiagnosed in specific populations due to healthcare
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access barriers or diagnostic bias, training data will underrepresent those
conditions in those populations. A model trained on this data may fail to
recognize the conditions when they do occur, perpetuating health dispari-
ties.

Aggregation Bias and Population Heterogeneity:
Aggregation bias occurs when a single model is used for diverse popula-

tions that may require different approaches. By training one model on data
from all groups combined, the model may learn patterns that work well on
average but fail for specific subpopulations.

Medical AI illustrates this concern. Drug dosages, treatment responses,
and disease presentations can vary by age, sex, ethnicity, and other factors.
A model trained on predominantly adult data and deployed for pediatric pa-
tients may make inappropriate predictions. A model trained on one ethnic
population and deployed in another may miss important physiological dif-
ferences. While collecting more diverse training data helps, sometimes the
appropriate solution is training separate models for different populations
or incorporating population-specific features and interactions.

Evaluation Bias and Incomplete Metrics:
Finally, even when models are carefully designed, evaluation bias can

mask problems. If test datasets lack diversity or if evaluation metrics focus
on aggregate performance, models may appear fair when they are not.

Reporting overall accuracy can hide severe disparities. A model with
95% overall accuracy might have 99% accuracy for the majority group but
only 80% for a minority group. Aggregate metrics like accuracy, AUC, or
F1 score should be supplemented with group-specific metrics to ensure eq-
uitable performance. Furthermore, test datasets must be diverse and rep-
resentative; testing only on curated, balanced datasets may not reveal dis-
parities that emerge in messier real-world deployments.

10.6.2 Fairness Definitions
Defining fairness mathematically is surprisingly complex and contentious.
What seems intuitively "fair" in one context may seem unfair in another, and
multiple mathematical definitions of fairness often conflict with each other.
This section explores the most prominent fairness criteria, their intuitions,
and the fundamental tensions between them.

Before examining specific definitions, we must identify what we’re try-
ing to be fair about. In machine learning fairness, we typically concern
ourselves with protected attributes, characteristics like race, gender, age,
religion, or disability status that should not influence decisions in many con-
texts. The goal is to ensure that individuals are not disadvantaged based
on membership in protected groups.

Demographic Parity: Equal Outcomes Across Groups:
The simplest fairness criterion is demographic parity, also called sta-

tistical parity. This requires that positive predictions occur at equal rates
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across groups:

P (Ŷ = 1|A = 0) = P (Ŷ = 1|A = 1)

where Ŷ is the predicted outcome and A is the protected attribute (e.g.,
A = 0 for women, A = 1 for men).

Demographic parity embodies the principle that outcomes should be dis-
tributed equally across demographic groups. If 10% of male applicants are
predicted to succeed, then 10% of female applicants should also be predicted
to succeed. In hiring, lending, university admissions, or any decision con-
text, this criterion ensures equal representation.

The appeal of demographic parity is its simplicity and its alignment
with notions of proportional representation. If loans are approved for 30%
of white applicants, this criterion requires that loans also be approved for
30% of Black applicants. Critics argue, however, that demographic parity
ignores potential differences in qualification or merit. If groups genuinely
differ in the underlying trait being measured (e.g., creditworthiness, job
qualifications), forcing equal outcome rates may require accepting less qual-
ified candidates from one group or rejecting more qualified candidates from
another.

Consider college admissions. Suppose two demographic groups have
different distributions of standardized test scores due to systemic educa-
tional inequities. Demographic parity would require admitting students
from both groups at equal rates. This might mean admitting lower-scoring
students from one group to meet the quota, which some view as unfair to
higher-scoring rejected students from the other group. Others counter that
test scores are themselves biased measures that don’t capture true poten-
tial, and proportional representation serves important social goals like di-
versity and remedying historical exclusion.

Equalized Odds: Balancing Error Rates:
Equalized odds addresses some concerns with demographic parity by

conditioning on the true outcome. It requires that the true positive rate
and false positive rate are equal across groups:

P (Ŷ = 1|Y = 1, A = 0) = P (Ŷ = 1|Y = 1, A = 1) (equal TPR)
P (Ŷ = 1|Y = 0, A = 0) = P (Ŷ = 1|Y = 0, A = 1) (equal FPR)

This criterion ensures that among individuals who truly deserve posi-
tive outcomes (e.g., qualified job candidates, creditworthy borrowers), the
model predicts positive outcomes at equal rates across groups. Similarly,
among individuals who truly deserve negative outcomes, the model pre-
dicts negative outcomes at equal rates across groups. In other words, the
model makes errors, both false positives and false negatives, at equal rates
for all groups.
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The intuition behind equalized odds is that fairness means equal treat-
ment conditional on merit. If two candidates are equally qualified (same
true label Y ), they should have equal probability of positive predictions re-
gardless of protected attributes. This respects the principle that decisions
should be based on relevant qualifications, not on demographic character-
istics.

Returning to the lending example, equalized odds requires that among
truly creditworthy borrowers, approval rates are equal across racial groups,
and among truly non-creditworthy borrowers, rejection rates are equal across
racial groups. If the model approves 90% of creditworthy white applicants,
it should also approve 90% of creditworthy Black applicants. If it rejects
95% of non-creditworthy white applicants, it should also reject 95% of non-
creditworthy Black applicants.

Equalized odds is widely considered in academic research and is often
more palatable than demographic parity because it explicitly accounts for
ground truth qualifications. However, it has limitations. It requires ac-
cess to true labels, which may themselves be biased, and it doesn’t address
whether the groups have equal access to the resources needed to achieve
positive outcomes in the first place.

Equal Opportunity: Focus on Positive Outcomes:
Equal opportunity is a relaxation of equalized odds that only constrains

the true positive rate:

P (Ŷ = 1|Y = 1, A = 0) = P (Ŷ = 1|Y = 1, A = 1)

This criterion says that among qualified individuals, everyone should
have an equal chance of being identified as qualified, regardless of group
membership. It focuses on ensuring that opportunity is not denied based
on protected attributes.

Equal opportunity is particularly relevant in settings like hiring or ad-
missions where the primary concern is ensuring that qualified individuals
from all groups have fair access to opportunities. It permits differences in
false positive rates across groups, which might arise if groups have differ-
ent base rates in the population. Some argue this is acceptable as long as
qualified individuals are treated equally.

Predictive Parity: Equal Precision:
Predictive parity, also called outcome test fairness or calibration within

groups, requires:

P (Y = 1|Ŷ = 1, A = 0) = P (Y = 1|Ŷ = 1, A = 1)

This means that among individuals who receive positive predictions, the
proportion who truly deserve them is equal across groups. In other words,
precision (positive predictive value) is equal across groups.

From the decision-maker’s perspective, predictive parity is appealing: if
the model predicts an applicant will succeed, that prediction has the same
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meaning regardless of the applicant’s demographic group. A predicted suc-
cess probability of 80% means the same thing for all groups. This supports
consistent decision-making.

However, predictive parity can permit different error rates across groups
in ways that disadvantage some groups. In particular, it can coexist with
different false positive rates or false negative rates, meaning that unqual-
ified individuals or qualified individuals are treated differently depending
on their group membership.

Individual Fairness: Treating Similar Individuals Similarly:
The fairness criteria discussed so far are group fairness notions, ensur-

ing statistical properties hold at the group level. Individual fairness takes
a different approach, requiring that similar individuals receive similar pre-
dictions:

d(ŷi, ŷj) ≤ L · d(xi, xj)
where d(·, ·) measures distance between individuals or predictions, and

L is a Lipschitz constant.
The intuition is compelling: if two individuals are nearly identical in all

relevant respects, they should receive nearly identical predictions. Discrim-
inating between similar individuals based on protected attributes would vi-
olate this principle.

Individual fairness faces a significant challenge: defining what "similar"
means. The metric d(xi, xj) must capture which features are relevant for
determining similarity in a given context. Should two individuals be con-
sidered similar if they have the same education and experience but differ
in age? The answer depends on whether age is relevant to the task. Con-
structing appropriate similarity metrics often requires domain expertise
and value judgments, making individual fairness difficult to operationalize
despite its intuitive appeal.

The Impossibility of Simultaneous Fairness:
A fundamental result in fairness research is that these criteria gener-

ally cannot be satisfied simultaneously except in trivial cases. A theorem
by Kleinberg, Mullainathan, and Raghavan shows that if the base rates
(prevalence of positive outcomes) differ between groups, then it is math-
ematically impossible to satisfy demographic parity, equalized odds, and
predictive parity at the same time.

This impossibility result has profound implications. It means that fair-
ness is not a single objective that can be optimized but rather a multifaceted
concept requiring trade-offs. Different stakeholders may prioritize different
fairness criteria. Loan applicants might care about equal opportunity (qual-
ified applicants have equal chances regardless of race), while lenders might
care about predictive parity (approved loans default at equal rates across
groups). Policymakers must make explicit choices about which fairness cri-
teria to prioritize in different contexts, recognizing that satisfying one may
compromise another.
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This fundamental tension underscores that fairness is ultimately a nor-
mative question, not purely a technical one. Mathematics can clarify the im-
plications of different fairness definitions and the trade-offs between them,
but it cannot determine which definition is "correct." That requires ethical
reasoning, stakeholder input, and consideration of social context and val-
ues.

10.6.3 Fairness Interventions
Pre-Processing
Goal: Modify training data to reduce bias.

Techniques:
1. Reweighting:
• Assign weights to training examples

• Upweight underrepresented groups

• Downweight overrepresented groups
2. Resampling:
• Oversample minority group

• Undersample majority group

• Balance dataset
3. Data Augmentation:
• Generate synthetic examples for underrepresented groups

• Example: adversarial debiasing

In-Processing
Goal: Modify learning algorithm to enforce fairness.

Adversarial Debiasing:
• Train predictor to predict Y from X

• Train adversary to predict A from predictions

• Predictor learns to make predictions adversary cannot distinguish
Loss Function:

L = Lpred − λLadv

Fairness Constraints:
• Add fairness metrics as constraints

• Optimize: maximize accuracy subject to fairness constraint

• Example: constrained optimization, Lagrangian
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Post-Processing
Goal: Adjust predictions to satisfy fairness criteria.

Threshold Optimization:

• Use different decision thresholds for different groups

• Calibrate thresholds to equalize TPR or FPR

Example: Equalized Odds Post-Processing

1. Train model without fairness constraints

2. On validation set, find thresholds that equalize TPR and FPR across
groups

3. Apply group-specific thresholds at test time

10.6.4 Fairness in Practice
Case Study: COMPAS Recidivism Prediction

Background:

• COMPAS: tool to predict recidivism (reoffending)

• Used in criminal justice for bail, sentencing

ProPublica Investigation (2016):

• Found racial disparities

• Black defendants: higher false positive rate

• White defendants: higher false negative rate

• Violates equalized odds

Debate:

• Northpointe (COMPAS maker): model satisfies predictive parity

• ProPublica: should satisfy equalized odds

• Highlights tension between fairness definitions

Lessons:

• Choice of fairness metric is value judgment

• Requires stakeholder input

• Transparency crucial

• Regular auditing needed
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10.7 Interpretability and Explainability
10.7.1 Why Interpretability Matters
Reasons:

• Trust: Users need to understand why model made decision

• Debugging: Identify model failures

• Fairness: Detect discriminatory patterns

• Safety: Ensure model behaves correctly

• Regulation: GDPR "right to explanation"

• Science: Gain insights from model

Trade-off: Accuracy vs. interpretability
Inherently Interpretable Models:

• Linear regression

• Decision trees

• Rule-based systems

Black-Box Models:

• Deep neural networks

• Ensemble methods

• SVMs with non-linear kernels

10.7.2 Post-Hoc Explanation Methods
Feature Importance
Permutation Importance:

1. Train model on data

2. For each feature:

• Randomly permute feature values
• Measure drop in model performance

3. Features causing large drop are important

Advantage: Model-agnostic.
Disadvantage: Doesn’t show how features affect predictions.
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SHAP (SHapley Additive exPlanations)
Based on Shapley values from game theory.

Idea: Each feature is a "player" contributing to the prediction.
Shapley Value:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i})− f(S)]

where N is set of all features, S is subset not containing i.
Interpretation: Average marginal contribution of feature i across all

possible feature subsets.
Properties:

• Efficiency: ∑i ϕi = f(x)− f(∅) (prediction minus baseline)

• Symmetry: Identical features get same value

• Dummy: Irrelevant features get zero value

• Additivity: Values combine correctly for ensembles

TreeSHAP: Efficient algorithm for tree-based models.
KernelSHAP: Model-agnostic approximation.
Example: SHAP for Binary Classification
Suppose model predicts probability 0.7 for loan approval.
SHAP values:

• Base rate: 0.5

• Income: +0.15

• Credit score: +0.10

• Age: -0.05

• Other features: +0.00

Sum: 0.5 + 0.15 + 0.10− 0.05 = 0.7
Interpretation: High income and good credit increase approval proba-

bility; younger age decreases it slightly.

LIME (Local Interpretable Model-agnostic Explanations)
Idea: Explain individual predictions by fitting simple model locally.

Algorithm:

1. Select instance to explain: x

2. Generate perturbed samples around x
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3. Get black-box predictions for perturbed samples

4. Weight samples by proximity to x

5. Fit interpretable model (e.g., linear) on weighted samples

6. Use interpretable model coefficients as explanation

For Images:

• Segment image into superpixels

• Perturb by turning superpixels on/off

• Identify which superpixels contribute most to prediction

Advantage: Works for any model.
Disadvantage: Explanation is local, may be unstable.

10.7.3 Attention Visualization
For models with attention mechanisms (Transformers).

Self-Attention Weights:

αij =
exp(qTi kj/

√
dk)∑

k exp(q
T
i kk/

√
dk)

Interpretation: αij indicates how much position i attends to position
j.

Visualization:

• Heatmap of attention weights

• Shows which input tokens model focuses on

Example: Machine Translation
For translating "The cat sat on the mat" to French:
When generating "chat" (cat), attention focuses on "cat".
When generating "le" (the), attention focuses on "the" and "cat".
Limitation: Attention weights don’t always correspond to explanation

(Jain & Wallace, 2019).

10.7.4 Saliency Maps for Images
Goal: Highlight pixels important for prediction.
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Gradient-Based Methods
Vanilla Gradients:

S(x) =

∣∣∣∣∂f(x)∂x

∣∣∣∣
Problem: Noisy, hard to interpret.
Integrated Gradients:

Si(x) = (xi − x′i)
∫ 1

α=0

∂f(x′ + α(x− x′))
∂xi

dα

where x′ is baseline (e.g., black image).
Interpretation: Accumulated gradients along path from baseline to x.
Properties:

• Sensitivity: non-zero gradient if feature matters

• Implementation invariance: functionally equivalent networks have same
attributions

CAM (Class Activation Mapping)
For CNNs with global average pooling.

Idea: Weighted combination of feature maps.

Mc(x, y) =
∑
k

wc
kAk(x, y)

where Ak is activation of feature map k, wc
k is weight for class c.

Result: Heatmap showing regions contributing to predicted class.
Grad-CAM: Generalization using gradients, works for any CNN.

αc
k =

1

Z

∑
i,j

∂yc

∂Ak(i, j)

Mc = ReLU
(∑

k

αc
kAk

)
Application: Diagnose what CNN "sees" (e.g., correct features vs. spu-

rious correlations).

10.7.5 Counterfactual Explanations
Question: "What would need to change for different outcome?"

Example: Loan denied. Counterfactual: "If income were $50K instead
of $40K, loan would be approved."

Desirable Properties:
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• Validity: Counterfactual yields desired prediction

• Proximity: Close to original instance

• Sparsity: Change few features

• Actionability: Changes are feasible (can increase income, can’t change
age)

• Diversity: Multiple options

Optimization:

min
x′
L(f(x′), ytarget) + λ1d(x, x

′) + λ2∥x− x′∥0

Subject to: x′ is valid (e.g., income ≥ 0).

10.8 Privacy in Machine Learning
As machine learning systems are trained on vast amounts of personal data,
medical records, financial transactions, browsing histories, social media
posts, privacy concerns have moved to the forefront of AI ethics. Training
data often contains sensitive information that individuals expect to remain
confidential. Even when data is collected with consent, there are risks that
models might memorize and leak training data, enable inference of private
attributes, or be exploited by adversaries to extract information. This sec-
tion explores privacy risks in ML and techniques to mitigate them while
maintaining model utility.

10.8.1 Privacy Risks in Machine Learning
Machine learning systems create multiple avenues for privacy violations
that go beyond simple data breaches. Understanding these risks is essential
for designing privacy-preserving systems.

Training Data Memorization and Extraction:
Large neural networks, particularly language models, can memorize spe-

cific training examples rather than just learning general patterns. When
models are trained on data containing private information, credit card num-
bers in web text, personal health information in medical records, private
messages in social media data, they may memorize and later reveal this
information.

Recent research has demonstrated alarming memorization in large lan-
guage models. Carlini et al. (2021) showed that GPT-2, when prompted with
partial email addresses, phone numbers, or other identifiable information
from its training set, could complete them accurately, effectively extracting
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training data verbatim. While rare, such extraction is possible through tar-
geted querying. With thousands of carefully crafted queries, researchers
extracted dozens of memorized examples including personal information.
The problem worsens with model size, larger models have more capacity to
memorize, and longer training increases memorization risk.

Membership Inference Attacks:
Even when models don’t explicitly memorize data, they may reveal whether

specific individuals were in the training set. Membership inference attacks
determine if a given example was used during training by exploiting differ-
ences in model behavior on training versus non-training data.

The attack works by observing that models typically have higher confi-
dence and lower loss on training examples than on unseen data due to over-
fitting. An adversary with query access to the model can submit a target
example and observe the prediction confidence. High confidence suggests
the example was in the training set, while low confidence suggests it wasn’t.
By training a binary classifier on confidence scores from known training and
non-training examples, the adversary can predict membership for arbitrary
examples.

Why does this matter? If the training set represents a sensitive group,
patients with a specific disease, customers who defaulted on loans, users of
a stigmatized service, determining membership reveals private information
about individuals. A membership inference attack on a medical AI model
could reveal that someone has a particular disease, violating medical con-
fidentiality even if the model never explicitly outputs that information.

Model Inversion and Attribute Inference:
Model inversion attacks attempt to reconstruct training data from a

trained model. For example, given a face recognition model trained on pho-
tos of specific individuals, an attacker might reconstruct approximations of
those faces. Fredrikson et al. (2015) demonstrated this for face recognition,
generating recognizable face images from models by iteratively optimizing
inputs to maximize confidence for target identities. While reconstructed
images are imperfect, they often capture key identifying features, violating
privacy of individuals whose faces were in the training data.

Attribute inference represents a related threat where adversaries infer
sensitive attributes not explicitly used for training. For instance, a model
predicting medical outcomes from clinical data might inadvertently encode
information about patient race or gender in its internal representations,
even if those attributes weren’t input features. An adversary could train
a secondary model to extract these attributes from the primary model’s
predictions or intermediate activations, revealing sensitive information the
model was never meant to expose.

These attacks threaten privacy even when data is carefully curated. Re-
moving explicit identifiers like names or social security numbers isn’t suf-
ficient if models learn patterns that encode identity or sensitive attributes
implicitly through correlations with other features.
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10.8.2 Differential Privacy
Differential privacy provides a mathematical framework for quantifying
and limiting privacy risk. It offers formal guarantees that an individual’s
data has limited influence on analysis outputs, protecting privacy even against
adversaries with auxiliary information.

Definition and Intuition:
An algorithm A satisfies (ϵ, δ)-differential privacy if for all neighboring

datasets D and D′ differing in one record, and for all possible outputs S:

P (A(D) ∈ S) ≤ eϵP (A(D′) ∈ S) + δ

This definition captures a powerful idea: adding or removing any single
individual’s data changes the probability of any output by at most a mul-
tiplicative factor eϵ plus a small additive term δ. The parameters ϵ and
δ quantify privacy loss. Smaller ϵ means stronger privacy, outputs barely
depend on any individual’s data. The parameter δ represents a small prob-
ability of catastrophic privacy failure, typically set to be negligibly small.

In practice, typical values are ϵ ∈ [0.1, 10] and δ ≪ 1/n where n is the
dataset size, often δ = 10−5 or smaller. Perfect privacy would require ϵ = 0,
which would make outputs completely independent of data and thus use-
less for analysis. No privacy would correspond to ϵ = ∞. Practical values
balance privacy protection with analytical utility.

The remarkable strength of differential privacy lies in its worst-case
guarantee. It protects against all inference attacks, including those not yet
imagined. Even if an adversary knows everyone’s data except one person’s,
they cannot reliably determine that person’s data from the algorithm’s out-
put. This protection holds regardless of what auxiliary information the ad-
versary possesses or what computational resources they have available.

Mechanisms for Differential Privacy

Achieving differential privacy requires adding carefully calibrated noise to
outputs. The amount and type of noise depend on the sensitivity of the
computation, how much a single individual’s data can affect the result.

The Laplace mechanism applies to functions producing numeric out-
puts. For a function f : D → R, the mechanism adds noise drawn from
a Laplace distribution:

f̃(D) = f(D) + Lap
(
∆f

ϵ

)
The key quantity is the sensitivity ∆f = maxD,D′ |f(D) − f(D′)|, which

measures the maximum change in output from changing one record. The
noise scale ∆f/ϵ is calibrated so that noise masks individual contributions
while preserving aggregate patterns.
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For example, consider releasing the average age in a dataset privately.
If ages are bounded between 0 and 120, and the dataset has n individuals,
then changing one person’s age can change the average by at most 120/n.
This is the sensitivity. Adding Laplace noise with scale 120/(nϵ) makes the
result differentially private. For a dataset of 10,000 people and ϵ = 1, the
noise has standard deviation roughly 0.17 years, small enough to preserve
utility while protecting individual privacy.

The Gaussian mechanism provides an alternative using Gaussian noise,
which can offer better utility for moderate privacy levels. For (ϵ, δ)-differential
privacy, the Gaussian mechanism adds noise with standard deviation:

σ =
∆f
√

2 ln(1.25/δ)

ϵ

Gaussian noise typically has thinner tails than Laplace noise, meaning
extremely large noise values are less likely, which can improve utility. How-
ever, it requires introducing the δ parameter, representing a small proba-
bility of privacy violation. The choice between Laplace and Gaussian mech-
anisms involves tradeoffs between simplicity (Laplace has δ = 0) and utility
(Gaussian often performs better for moderate ϵ).

Composition and Privacy Budgeting:
A critical property of differential privacy is composition, running mul-

tiple differentially private computations degrades privacy cumulatively. If
we perform k computations, each with privacy parameter ϵi, the total pri-
vacy loss is bounded by

∑
i ϵi under basic composition theorems (for δ = 0).

This accumulation is called the privacy budget.
Privacy budgeting becomes essential for long-term systems and organi-

zations conducting multiple analyses on sensitive datasets. An organiza-
tion might allocate a total privacy budget of ϵtotal = 1.0 for all analyses on
a medical database. Each analysis, computing statistics, training models,
generating reports, consumes part of the budget. Once the budget is ex-
hausted, no further analyses can be performed with privacy guarantees.
This forces careful prioritization of which analyses are most important and
prevents excessive information leakage through repeated queries.

The privacy budget concept has profound implications. Unlike tradi-
tional security where breaches are binary (either data is compromised or
not), privacy under differential privacy is a finite resource that depletes
with use. Organizations must carefully manage this resource, planning
which analyses to conduct and in what order. Some analyses might be more
privacy-expensive than others, consuming larger portions of the budget.

Advanced composition theorems provide tighter bounds than naive sum-
mation. The moments accountant and Rényi differential privacy exploit
concentration of privacy loss, showing that under many queries, total pri-
vacy loss grows slower than simply adding individual losses. These tech-
niques have proven crucial for training deep learning models with reason-
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able privacy budgets, as training involves thousands or millions of param-
eter updates, each of which must satisfy differential privacy.

Differentially Private SGD (DP-SGD)
Goal: Train neural networks with privacy guarantees.

Algorithm:

1. Compute per-example gradients

2. Clip gradients to bound sensitivity:

g̃i = gi/max

(
1,
∥gi∥
C

)
3. Add Gaussian noise to average gradient:

g̃ =
1

B

(
B∑
i=1

g̃i +N (0, σ2C2I)

)

4. Update parameters with noisy gradient

Privacy Accounting:
Each gradient update consumes privacy budget.
Total privacy: Compute using composition theorems (e.g., moments

accountant).
Trade-off:

• Stronger privacy (smaller ϵ) → more noise → lower accuracy

• Typical accuracy drop: 1-5% for moderate privacy

Example Results:

• MNIST: 98% accuracy with ϵ = 0.1

• CIFAR-10: 70% accuracy with ϵ = 2

10.8.3 Federated Learning
Federated learning offers a complementary approach to privacy-preserving
ML by training models on distributed data without centralizing it. Rather
than collecting data from many sources, smartphones, hospitals, organiza-
tions, into a central server where it could be vulnerable, federated learning
brings the model to the data, allowing each source to train locally while
contributing to a shared global model.

Architecture and Protocol:
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The federated learning paradigm involves a central server coordinating
training across many clients, which might be individual devices, hospitals,
or separate organizations maintaining their own data silos. The protocol
proceeds iteratively through several steps. First, the server sends the cur-
rent global model to a subset of participating clients. Each client then trains
this model on their local data for several epochs, computing gradients or
updated parameters. Rather than sending raw data to the server, clients
send only these model updates, gradients or weight changes. The server
aggregates these updates to produce a new global model, typically using a
weighted average where each client’s contribution is weighted by the num-
ber of training samples they have:

wt+1 =

K∑
k=1

nk
n
wt+1

k

where nk represents the number of samples on client k and n is the total
across all clients. This process repeats until the global model converges.

This approach, known as Federated Averaging or FedAvg, was proposed
by McMahan et al. (2017) and enables collaborative learning while keep-
ing raw data on clients. It addresses both privacy concerns, sensitive data
never leaves local devices, and practical data governance issues where reg-
ulations or policies prohibit data centralization. Organizations can benefit
from collaborative learning without sharing proprietary or sensitive data.

Federated learning has found particularly valuable applications in mo-
bile computing where data is naturally distributed across millions of de-
vices. Google’s Gboard keyboard uses federated learning to improve next-
word prediction and auto-correction without sending users’ typed text to
servers, preserving privacy while benefiting from collective learning. Sim-
ilarly, Apple uses federated learning for features like QuickType keyboard
suggestions and "Hey Siri" wake word detection, keeping voice data on de-
vices while improving system-wide models.

Challenges in Federated Learning:
Despite its promise, federated learning introduces unique challenges

compared to centralized training. Data heterogeneity is a major concern,
different clients have fundamentally different data distributions. Phone
users in different regions speak different languages, have different usage
patterns, and generate qualitatively different data. Hospitals serve dif-
ferent patient populations with different disease prevalence, demograph-
ics, and health risks. This non-IID (not independent and identically dis-
tributed) nature of data can slow convergence and degrade performance as
the global model struggles to accommodate diverse local distributions.

Communication represents a severe bottleneck in federated settings. Send-
ing model updates requires bandwidth, which is limited and expensive on
mobile networks. Model sizes for modern neural networks can be megabytes
or larger, prohibitive for frequent transmission over cellular connections.
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This necessitates techniques like gradient compression, quantization of up-
dates, and selective sharing where only significant changes are transmitted,
all aimed at reducing communication costs while preserving model quality.

Systems heterogeneity further complicates federated learning. Clients
have vastly varying computational capabilities, from flagship smartphones
with powerful processors to budget devices with limited compute. Devices
have unreliable availability, phones join training when charging and con-
nected to Wi-Fi, then leave unpredictably. This creates challenges with
stragglers (slow clients that delay training), dropouts (clients disconnect-
ing mid-training), and fairness (ensuring all clients benefit from the global
model, not just those with more data or faster devices).

Finally, while federated learning improves privacy compared to central-
ized approaches, basic federated learning is not perfectly private. Model
updates, though more abstract than raw data, can still leak information.
Gradient analysis or membership inference attacks on shared updates can
potentially extract training data or determine whether specific examples
were in a client’s dataset. An honest-but-curious server could attempt to
extract information from uploaded gradients, motivating additional privacy
protections.

Privacy-Enhanced Federated Learning:
Combining federated learning with other privacy techniques strength-

ens protections substantially. Differential privacy can be applied by hav-
ing clients add noise to their updates before sending them to the server.
The noise is calibrated to ensure individual updates don’t leak information,
while aggregated updates across many clients still provide useful signal for
improving the global model. This provides formal privacy guarantees even
if an adversary observes all communication.

Secure aggregation uses cryptographic protocols so the server learns
only the aggregated update, never seeing individual client updates. Clients
encrypt their updates using multi-party computation techniques, the server
aggregates the encrypted updates, and the result is decrypted to reveal only
the sum, never any individual contribution. This provides strong privacy
guarantees even against a malicious server actively trying to extract infor-
mation from client updates.

Together, federated learning with differential privacy and secure aggre-
gation enables training on highly sensitive data like medical records or fi-
nancial transactions while providing formal privacy guarantees. However,
the combination adds significant complexity, computational overhead, and
engineering challenges. Cryptographic protocols introduce latency, differ-
ential privacy reduces model accuracy, and the overall system requires care-
ful orchestration. These costs limit deployment to organizations with sub-
stantial resources and expertise, though the technology continues maturing
and becoming more accessible.
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10.8.4 Secure Multi-Party Computation
Secure multi-party computation (MPC) addresses scenarios where multiple
parties want to jointly compute a function over their combined data without
revealing their individual inputs to each other. This cryptographic approach
enables computation on private data while maintaining strict confidential-
ity.

The canonical example involves two hospitals wanting to train a joint
model on their combined patient data to improve diagnostic accuracy. How-
ever, privacy regulations and competitive concerns prevent them from shar-
ing raw patient records. MPC allows them to compute the trained model
without either hospital learning anything about the other’s individual pa-
tients beyond what can be inferred from the final model itself.

Several cryptographic techniques enable MPC. Secret sharing splits data
into multiple shares distributed among parties such that no single party can
reconstruct the original data, but the parties can jointly perform computa-
tions on the shares. Homomorphic encryption allows computation directly
on encrypted data, parties can perform operations like addition and multi-
plication on encrypted values without decrypting them, only decrypting the
final result. Garbled circuits evaluate boolean circuits securely, with one
party creating an encrypted version of the circuit and another evaluating it
without learning intermediate values.

While MPC provides strong security guarantees, it comes with substan-
tial computational overhead. MPC protocols typically run 10 to 1000 times
slower than plaintext computation, sometimes more for complex operations.
This makes MPC most suitable for scenarios where privacy is paramount
and performance is less critical, or for computations that are infrequent
enough that the overhead is acceptable. A common use case is privacy-
preserving machine learning inference, where a client wants predictions
from a model without revealing their input data to the model owner, and
the model owner wants to protect their proprietary model. MPC allows se-
cure inference where neither party learns the other’s private information.

10.9 AI Safety and Alignment
10.9.1 AI Safety Overview
Goal: Ensure AI systems behave as intended and don’t cause harm.

Safety Concerns:
Near-Term:

• Robustness failures (adversarial examples)

• Distribution shift

• Unintended behaviors
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• Misalignment with human values

Long-Term:

• Superintelligent AI systems

• Loss of human control

• Existential risks

10.9.2 Robustness and Adversarial Examples
Adversarial Examples

Definition: Inputs crafted to fool model with small perturbations.
Example: Image classified as "panda" with 57% confidence. Add imper-

ceptible noise → classified as "gibbon" with 99% confidence.
Formal: Find δ such that:

• f(x+ δ) ̸= f(x) (misclassification)

• ∥δ∥ < ϵ (small perturbation)

Adversarial Attacks

Fast Gradient Sign Method (FGSM):

x′ = x+ ϵ · sign(∇xL(x, ytrue))

Single-step attack, fast but weak.
Projected Gradient Descent (PGD):
Iterative version:

xt+1 = Πx+S (xt + α · sign(∇xL(xt, ytrue)))

where S is allowed perturbation set, Π projects back.
Carlini-Wagner (C&W) Attack:
Optimization-based:

min
δ
∥δ∥2 + c · f(x+ δ)

where f is loss encouraging misclassification.
More effective but computationally expensive.
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Adversarial Defenses
Adversarial Training:

Idea: Train on adversarial examples.
Min-Max Optimization:

min
θ

E(x,y)

[
max
∥δ∥≤ϵ

L(x+ δ, y; θ)

]
Inner max: generate adversarial example. Outer min: train model to be

robust.
Algorithm:

1. For each batch:

• Generate adversarial examples (PGD)
• Train on adversarial examples

Result: Significantly improved robustness, but:

• Accuracy drops on clean data (5-10%)

• Expensive to train

• Not perfect defense

Certified Defenses:
Goal: Provable robustness guarantees.
Randomized Smoothing:
• Add Gaussian noise to input

• Predict class by majority vote over noisy samples

• Provides certified radius: if prediction is c, guaranteed for all x′ with
∥x− x′∥ < r

Verification-Based:
• Use formal methods to verify robustness

• Complete but computationally expensive

Other Defenses:
• Input transformations (JPEG compression, bit-depth reduction)

• Defensive distillation

• Detection methods

Arms Race: New attacks break defenses, new defenses proposed, cycle
continues.
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10.9.3 Distribution Shift
Problem: Model trained on distribution Ptrain, deployed on Pdeploy.

Types:
1. Covariate Shift: P (X) changes, P (Y |X) same.
2. Label Shift: P (Y ) changes, P (X|Y ) same.
3. Concept Shift: P (Y |X) changes.
Example: Medical model trained on hospital A, deployed at hospital B

(different patient demographics, equipment).
Consequences: Degraded performance, unfair outcomes.
Solutions:
Domain Adaptation:

• Learn features invariant to domain

• Adversarial domain adaptation

Domain Generalization:

• Train on multiple domains

• Learn to generalize to unseen domains

Robust Optimization:

• Optimize worst-case performance over distribution shifts

• Distributionally robust optimization (DRO)

Continual Learning:

• Adapt to new data over time

• Avoid catastrophic forgetting

10.9.4 AI Alignment
Problem: Ensuring AI systems pursue intended goals.

Challenges:
1. Specification Problem:

• Hard to specify what we want formally

• Example: "make humans happy" could lead to wireheading

2. Goodhart’s Law:

• "When measure becomes target, it ceases to be good measure"

• Proxy objectives can be gamed

3. Reward Hacking:
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• RL agent exploits bugs in reward function

• Example: boat racing game, agent finds loophole to get points without
finishing race

Approaches:
Inverse Reinforcement Learning (IRL):

• Infer reward function from expert demonstrations

• Learn human values implicitly

Cooperative Inverse RL (CIRL):

• Model human and AI as cooperating to maximize unknown reward

• AI learns by observing human actions

• Human retains control

Reinforcement Learning from Human Feedback (RLHF):

• Used in ChatGPT, Claude

• Train reward model from human preferences

• Use RL to optimize for learned reward

RLHF Pipeline:

1. Pre-train language model

2. Collect human comparisons: which output is better?

3. Train reward model to predict human preferences

4. Fine-tune LM with PPO using reward model

Challenges:

• Reward model may not capture all human values

• Distribution shift from training

• Scalability: need many human labels

Constitutional AI:

• Define principles (constitution) for AI behavior

• Use AI to critique and revise outputs based on principles

• Reduces human labeling burden

Value Learning:
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• Learn human values from behavior, text, culture

• Aggregate preferences across humans

• Handle value disagreements

Corrigibility:
• AI should allow itself to be corrected

• Not resist shutdown or modification

• Open research problem

10.10 Environmental Impact of AI
The environmental footprint of AI, particularly the energy consumption and
carbon emissions from training large models, has emerged as an impor-
tant ethical consideration. As models grow larger and computational de-
mands increase, the environmental costs become substantial, raising ques-
tions about sustainability and responsibility in AI development.

10.10.1 Carbon Footprint of Training
Training large neural networks requires massive computation, translat-
ing directly into energy consumption and carbon emissions. The scale has
grown dramatically in recent years, with some modern language models
consuming energy equivalent to the lifetime emissions of multiple cars.

Large models consume staggering amounts of energy. Training GPT-3
consumed approximately 1,287 megawatt-hours of electricity. To put this
in perspective, a study by Strubell et al. (2019) estimated that training
one large Transformer model with neural architecture search generated
roughly 284 tons of CO, equivalent to five times the lifetime emissions of
an average car, including its manufacture. These figures have only grown
as models have scaled up, with some estimates suggesting that training the
largest current models may produce thousands of tons of CO.

Multiple factors influence the environmental impact of training. Model
size, measured in parameters, directly affects computational requirements,
larger models require more FLOPs (floating-point operations) for each train-
ing step. Dataset size matters both in terms of number of examples and
number of training epochs, seeing more data or repeating over data mul-
tiple times increases total computation. Training time accumulates both
from the main training run and from hyperparameter tuning and experi-
mentation, which can multiply total compute by factors of 10 or more. Hard-
ware efficiency varies substantially, newer GPU generations deliver more
FLOPs per watt, and specialized AI accelerators like TPUs can be more ef-
ficient than general-purpose GPUs. Perhaps most importantly, the energy
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source dramatically affects carbon emissions, training in regions powered
by coal generates roughly three times more CO than regions using natural
gas, and potentially 10 times more than regions with abundant renewable
energy.

The carbon intensity of electricity varies dramatically by location and
time. A model trained in Quebec, where electricity is predominantly hydro-
electric, produces near-zero carbon emissions. The same training in West
Virginia, heavily reliant on coal, generates substantial emissions. This has
led some organizations to strategically locate training in regions with clean
energy or schedule training during times when renewable energy is abun-
dant.

Let’s consider a concrete example: training BERT-base. Using 16 TPUs
for four days consumes approximately 1,507 kilowatt-hours of energy. With
average U.S. grid carbon intensity, this produces about 652 kilograms of CO.
In a coal-heavy region, emissions could reach 1,507 kg. With renewable en-
ergy, emissions approach zero. This variability underscores the importance
of energy sourcing decisions in responsible AI development.

Beyond training, inference also contributes to environmental impact.
While individual predictions consume far less energy than training, popular
models serve billions of queries daily. For a large language model serving
100 million queries per day at roughly one watt-second per query, total en-
ergy consumption is approximately 28 megawatt-hours per day. Over time,
aggregate inference costs can exceed training costs for widely deployed mod-
els, making inference efficiency important for long-term sustainability.

10.10.2 Reducing Environmental Impact
Growing awareness of AI’s environmental footprint has spurred efforts to
reduce it through technical innovations and operational changes.

Efficient architectures balance capability with computational cost. Model
families like MobileNet and EfficientNet achieve strong performance with
far fewer FLOPs than standard models, making them more suitable for
both training and deployment. Neural architecture search can explicitly
optimize for efficiency metrics alongside accuracy, discovering architectures
that achieve better performance per FLOP. Sparse models and mixture-of-
experts architectures activate only subsets of parameters for each input,
reducing active computation. Parameter sharing techniques reduce total
parameters while maintaining model capacity.

Training efficiency improvements reduce unnecessary computation at
multiple levels. Better optimization algorithms converge faster, requiring
fewer training steps to reach the same performance. Mixed-precision train-
ing using FP16 or BF16 arithmetic reduces memory and computation by a
factor of two with minimal accuracy loss, and modern GPUs provide special-
ized hardware for mixed-precision that further accelerates training. Gra-
dient checkpointing trades computation for memory, enabling larger batch
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sizes that improve GPU utilization and reduce total training time. Early
stopping and careful hyperparameter selection avoid wasteful overtraining
where additional computation yields diminishing returns.

Transfer learning and pre-training fundamentally change the economics
of model development by amortizing training costs across applications. Rather
than training from scratch for each task, teams pre-train large models once
on broad data and fine-tune them for specific applications. Fine-tuning is
vastly more efficient than pre-training, often requiring only a small frac-
tion of the compute. Public release of pre-trained models like BERT, GPT,
ResNet, and others enables thousands of downstream applications without
duplicating pre-training costs. This collective efficiency gain is substantial,
making transfer learning not just a practical technique but an environmen-
tal imperative.

Model compression techniques reduce inference costs, which matter for
widely deployed systems. Quantization, pruning, and distillation, discussed
in Section 10.3, dramatically reduce model size and computation. Deploy-
ing compressed models on edge devices can even be carbon-neutral if devices
use battery power charged by renewable energy, avoiding server energy con-
sumption entirely.

Hardware efficiency continues improving with each GPU generation.
NVIDIA’s A100 GPUs deliver significantly more FLOPs per watt than V100s,
and the newer H100 generation improves further. Specialized AI accel-
erators like Google’s TPUs, Graphcore’s IPUs, and Cerebras’s wafer-scale
systems optimize for specific workloads, achieving better efficiency than
general-purpose GPUs for their target applications. Data center efficiency
improvements, measured by power usage effectiveness (PUE), reduce over-
head from cooling and power delivery, ensuring that more of the total energy
consumption goes toward useful computation.

Operational and policy approaches complement technical solutions. Green
AI principles, advocated by researchers like Schwartz et al. (2020), call for
measuring and reporting environmental impact in research papers, making
efficiency an evaluation metric alongside accuracy, and considering environ-
mental costs in research decisions. When publishing results, researchers
should include carbon footprint estimates, factoring in both energy con-
sumption and grid carbon intensity.

Using renewable energy dramatically reduces carbon footprint even when
energy consumption remains high. Technology companies increasingly com-
mit to powering data centers with 100% renewable energy. Google claims
carbon-neutral operations through a combination of renewable energy pur-
chases and offsets. Microsoft has committed to becoming carbon-negative
by 2030, removing more carbon than it emits across its entire history. Orga-
nizations can choose to locate training infrastructure in regions with abun-
dant clean energy or purchase renewable energy certificates to offset emis-
sions.

Time-shifting training takes advantage of temporal variation in renew-
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able energy availability. Wind and solar generation fluctuate throughout
the day and across seasons, with excess capacity during certain hours. Train-
ing during high-renewable periods reduces carbon intensity of computa-
tion. For non-urgent workloads, flexible scheduling can substantially re-
duce emissions. Some cloud providers now offer carbon-aware computing
services that automatically schedule workloads when and where carbon in-
tensity is lowest.

Carbon offsetting allows organizations to compensate for emissions through
investments in renewable energy projects, reforestation, or carbon capture.
While offsets don’t eliminate emissions at the source, they can achieve car-
bon neutrality when properly implemented. However, offsets are controver-
sial, critics argue they don’t reduce actual emissions and may enable con-
tinued high consumption rather than incentivizing efficiency. Offset quality
varies widely, and verification of actual carbon reduction can be difficult.
Most sustainability experts view offsets as a complement to, not substitute
for, reducing emissions directly.

Model sharing and reuse reduce collective computational needs. Open-
source AI promotes efficiency by enabling researchers to build on existing
models rather than duplicating training efforts. Platforms like Hugging
Face, PyTorch Hub, and TensorFlow Hub host thousands of pre-trained
models freely available for download and fine-tuning. This infrastructure
dramatically reduces the aggregate energy consumption of the AI research
community by eliminating redundant training of similar models.

10.11 Societal Implications and Responsible
AI

The deployment of AI systems at scale affects society in profound ways, from
employment patterns to healthcare access to criminal justice. Understand-
ing these implications and developing frameworks for responsible AI de-
velopment are critical for ensuring technology serves humanity’s collective
interests.

10.11.1 AI and Employment
AI’s impact on employment generates significant concern and debate. While
technology has historically displaced some jobs while creating others, AI’s
ability to automate cognitive tasks raises questions about the scope and
pace of labor market disruption.

Jobs facing high automation risk include those centered on routine cog-
nitive tasks, data entry, basic document analysis, customer service inquiries,
scheduling and coordination. Machine learning excels at pattern recogni-
tion and optimization, threatening jobs that follow algorithmic processes.
Transportation workers including truck drivers, delivery drivers, and taxi
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drivers face potential displacement from autonomous vehicles, though full
automation remains years away and faces significant technical and regu-
latory hurdles. Manufacturing continues seeing automation through ad-
vanced robotics combined with computer vision for quality control and as-
sembly. Even certain professional services face AI encroachment, legal doc-
ument review, basic medical diagnosis assistance, and routine financial ad-
vising can be partially automated.

However, automation risk varies substantially even within occupations.
Tasks requiring genuine creativity, emotional intelligence and empathy,
complex social interaction and negotiation, physical dexterity in unstruc-
tured environments, and contextual judgment in novel situations remain
difficult to automate. Jobs integrating these components alongside routine
tasks are less vulnerable than purely algorithmic work. A radiologist who
explains diagnoses to patients, coordinates with other specialists, and han-
dles unusual cases faces less displacement risk than one focused solely on
reading standard scans.

Importantly, AI also creates employment opportunities. Data labeling,
annotation, and curation employ millions globally, with platforms like Ama-
zon Mechanical Turk and specialized labeling services supporting the AI
industry. AI development and deployment require machine learning en-
gineers, data scientists, ML operations professionals, and infrastructure
specialists, all growing occupational categories. AI systems need ongoing
oversight from ethicists, fairness auditors, policy specialists, and domain
experts who ensure responsible deployment. New industries emerge around
AI applications, from conversational AI interface design to prompt engineer-
ing for large language models to specialized trainers who teach AI systems
domain-specific knowledge.

Moreover, AI often augments rather than replaces workers, increasing
their productivity and capability. Radiologists use AI to identify suspicious
regions quickly, focusing their expertise on difficult cases. Programmers
use code generation tools to accelerate routine coding, spending more time
on architecture and problem-solving. Designers use generative models for
rapid prototyping, iterating faster on creative concepts. This augmentation
model increases productivity without necessarily eliminating jobs, though it
may change skill requirements and reduce demand for entry-level positions.

The distribution of gains from AI automation raises critical economic
and social questions. Productivity increases from AI tend to benefit capital
owners and highly skilled workers who control and direct AI systems. Less-
skilled workers whose tasks are automated face wage stagnation or unem-
ployment. This dynamic exacerbates income inequality unless mitigated by
policy interventions like progressive taxation, expanded social safety nets,
or universal basic income proposals. The concentration of AI capabilities
in large technology companies further concentrates wealth and economic
power.

Workforce adaptation through reskilling and education becomes essen-
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tial. Workers displaced from automatable jobs need training for roles where
humans complement AI. Educational systems must evolve to emphasize
skills AI enhances rather than replaces, critical thinking over rote mem-
orization, creativity over rule-following, collaboration over individual task
execution, emotional intelligence over purely cognitive skills. Lifelong learn-
ing becomes necessary as job requirements shift continuously, requiring
both individual commitment and institutional support through accessible
retraining programs.

Labor market transitions pose challenges even if new jobs eventually
emerge to replace displaced ones. Displaced workers may lack skills for
new positions, a truck driver may not easily transition to data science. Geo-
graphic mismatches arise when jobs are created in different locations than
jobs lost, rural manufacturing jobs versus urban tech jobs. Workers may
experience extended unemployment during transitions, with personal and
family costs beyond lost income. Social policies must address these tran-
sitional hardships through unemployment benefits, retraining programs,
relocation assistance, and income support.

10.11.2 AI in Healthcare
Healthcare represents one of the most promising domains for beneficial AI
deployment, with potential to improve diagnosis, personalize treatment, ac-
celerate drug discovery, and expand access to care. However, it also raises
significant ethical challenges around privacy, fairness, interpretability, and
appropriate use of algorithmic decision-making in life-and-death contexts.

The opportunities are substantial. Diagnostic AI assists and sometimes
surpasses human experts in medical image interpretation. Deep learning
models trained on millions of images detect diabetic retinopathy, lung can-
cer, breast cancer, and skin cancer with accuracy matching or exceeding spe-
cialist physicians. AI-assisted diagnosis can increase diagnostic accuracy,
provide rapid preliminary screening, ensure consistent evaluation across
providers, and expand access to specialist-level diagnosis in underserved
areas lacking trained radiologists or dermatologists. For conditions where
early detection is critical, AI screening can save lives by identifying prob-
lems that would otherwise be missed.

Treatment personalization uses AI to tailor therapies to individual pa-
tients based on genetics, biomarkers, medical history, and response pat-
terns observed in similar patients. Oncology benefits particularly from this
approach, with models predicting which cancer treatments work best for
specific tumor types and patient characteristics. Precision medicine guided
by AI can improve treatment outcomes while reducing the trial-and-error
approach that subjects patients to ineffective therapies with serious side
effects.

Drug discovery and development accelerates through AI-powered molec-
ular design, protein structure prediction (notably AlphaFold’s breakthrough
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in solving protein folding), and clinical trial optimization. AI can screen
millions of candidate molecules orders of magnitude faster than traditional
methods, identify promising drug candidates earlier in the pipeline, and
predict likely failures before expensive clinical trials. This acceleration
could bring therapies to market years earlier and make drug development
economically viable for rare diseases with small patient populations that
wouldn’t justify traditional research investments.

Healthcare access expands through AI technologies that bring medi-
cal expertise to underserved populations. Telemedicine platforms with AI
triage and preliminary assessment help remote or rural populations access
care. AI-powered chatbots provide basic health guidance for common ail-
ments. Low-cost diagnostic tools using smartphone cameras combined with
AI analysis enable screening in resource-constrained settings where tradi-
tional diagnostic equipment is unavailable. For billions of people with lim-
ited healthcare access, AI could provide dramatically better care than the
status quo.

Yet significant challenges temper this optimism. Privacy and security
are paramount in healthcare, where data is highly sensitive, legally pro-
tected through regulations like HIPAA in the United States and GDPR
in Europe, and attractive to malicious actors. AI systems must maintain
strict confidentiality, use strong encryption and access controls, prevent
data breaches and unauthorized access, and ensure patients understand
and consent to how their data is used for model training. The aggregation
of medical data for AI training creates centralized repositories that become
high-value targets for hackers.

Bias in medical AI can perpetuate or worsen health disparities. If train-
ing data underrepresents certain populations, racial minorities, women, el-
derly, rural populations, models will perform worse for those groups. This
isn’t hypothetical: a widely used algorithm for allocating healthcare re-
sources was found to systematically disadvantage Black patients because
it was trained on historical spending data reflecting discriminatory access
patterns rather than actual health needs. Ensuring equitable performance
requires diverse training data, disaggregated evaluation across demographic
groups, and explicit fairness testing.

Interpretability matters especially in healthcare where physicians bear
legal and professional responsibility for patient care. Doctors need to un-
derstand AI reasoning to trust recommendations, explain decisions to pa-
tients, identify potential errors, and satisfy malpractice liability standards.
Black-box models that provide accurate predictions on average but fail un-
predictably are unsuitable for medical decision-making. Explainable AI
methods help, but even with explanations, physicians must carefully weigh
AI suggestions against their clinical judgment and patient context.

Regulatory approval for medical AI follows pathways established for med-
ical devices but faces novel challenges. Traditional devices are static, a
scalpel or imaging machine behaves consistently after approval. AI models
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may drift or degrade as populations change, raising questions about post-
market surveillance and approval of model updates. Continuous learning
systems that improve after deployment challenge regulatory frameworks
designed for fixed devices. Regulators worldwide are adapting frameworks
for software as a medical device, but processes remain evolving.

Liability questions arise when AI assists medical decisions. If an AI-
assisted diagnosis is wrong and harms a patient, who bears responsibil-
ity, the physician who followed the AI’s recommendation, the AI developer
whose model erred, the hospital that deployed the system, or some combi-
nation? Legal frameworks and malpractice insurance haven’t fully adapted
to AI assistance in medicine. Clear liability standards are necessary for
both physician adoption and patient protection.

10.11.3 AI in Criminal Justice
Criminal justice is perhaps the most controversial domain for AI deploy-
ment. Applications include risk assessment algorithms for bail and sen-
tencing decisions, predictive policing systems that forecast where crimes
will occur, facial recognition for suspect identification, and case manage-
ment assistance for prosecutors and defenders. These applications promise
efficiency and consistency but raise profound concerns about fairness, ac-
countability, and the appropriate role of algorithms in justice.

Risk assessment tools like COMPAS (discussed earlier) predict likeli-
hood of recidivism to inform bail, sentencing, and parole decisions. Pro-
ponents argue algorithms provide more consistent risk assessment than
human judges, whose decisions may be influenced by irrelevant factors,
fatigue, or implicit bias. Algorithmic consistency could reduce arbitrary
disparities in criminal justice outcomes. Critics counter that these tools
exhibit racial disparities, lack transparency when proprietary, and raise
philosophical concerns about using predictions of future behavior to deter-
mine present punishment.

Predictive policing uses historical crime data to forecast where crimes
are likely to occur, directing patrol resources accordingly. The promise is
more efficient policing and crime prevention. However, this creates per-
nicious feedback loops: historical data reflects patterns of over-policing in
minority communities, often stemming from biased enforcement practices.
Models trained on this data predict elevated crime in the same neighbor-
hoods, leading to continued intensive policing, more arrests, more data con-
firming high crime rates, and perpetuation of the cycle. The predictions be-
come self-fulfilling, entrenching racial and geographic disparities in crimi-
nal justice contacts.

Facial recognition identifies suspects from surveillance footage or database
searches. This can help solve crimes and locate missing persons. How-
ever, it enables mass surveillance that threatens privacy and civil liberties.
Moreover, facial recognition exhibits higher error rates for people of color,
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particularly women with darker skin tones, leading to false identifications
and wrongful accusations. Several U.S. cities have banned police use of fa-
cial recognition due to these accuracy disparities and surveillance concerns.

Case management AI assists prosecutors and public defenders in review-
ing evidence, researching case law, and preparing arguments. This could
improve efficiency and access to justice, especially for under-resourced pub-
lic defender offices handling overwhelming caseloads. However, biased algo-
rithms might systematically recommend harsher treatment for certain de-
fendants or fail to identify exculpatory evidence, with serious consequences
for justice.

Principles for responsible use in criminal justice include strict require-
ments for transparency and explainability, proprietary black-box systems
are inappropriate for liberty deprivations. Defendants have a right to un-
derstand evidence and algorithms used against them. Systems should be
open to public and expert scrutiny. Mandatory fairness audits before de-
ployment and periodically thereafter should examine demographic dispar-
ities and their causes. If disparities exist, they must be investigated to de-
termine whether they reflect legitimate correlations or problematic bias.

Human oversight must be maintained, AI should assist rather than re-
place human judgment in consequential decisions. Judges should have dis-
cretion to override algorithmic recommendations based on individual cir-
cumstances. No decision depriving someone of liberty should be fully auto-
mated. The human remains responsible and accountable.

Accountability mechanisms are essential. When algorithmic recommen-
dations lead to unjust outcomes, there must be processes for challenging
decisions, identifying responsibility, and providing remedies. Developers,
deploying agencies, and human decision-makers all share responsibility for
ensuring justice. Clear liability standards and appeal processes protect in-
dividual rights.

Community engagement and consent matter, particularly in commu-
nities disproportionately affected by criminal justice system interactions.
These communities should have meaningful input into whether and how
AI systems are deployed in their neighborhoods. Deployment without com-
munity consultation, especially in areas with histories of over-policing, is
ethically problematic and undermines trust.

Some argue certain uses of AI in criminal justice are fundamentally in-
appropriate regardless of how fairly implemented. Using predictions to
determine punishment raises questions about presumption of innocence,
individualized assessment versus statistical generalization, and whether
punishment should be based on predicted future behavior or actual past
conduct. These are normative questions about the nature of justice that
technology alone cannot resolve.
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10.11.4 Misinformation and Deepfakes
Generative AI’s ability to create realistic text, images, audio, and video at
scale raises serious concerns about misinformation, manipulation, and ero-
sion of trust in media and democratic institutions.

The threats are multifaceted and growing. Synthetic media, commonly
called deepfakes, can fabricate realistic videos of people saying or doing
things they never did. Political deepfakes could influence elections by show-
ing fabricated candidate statements or staging compromising scenarios.
The technology has been weaponized for non-consensual deepfake pornog-
raphy, which harms individuals, overwhelmingly women, by creating fake
explicit content. Financial fraud leverages deepfake audio or video to imper-
sonate executives authorizing fraudulent transactions or relatives request-
ing emergency funds.

Automated misinformation generation using large language models en-
ables creating plausible disinformation at unprecedented scale and low cost.
Bots can flood social media with synthetic content supporting particular
narratives, amplify false claims, manipulate trending topics, and create ar-
tificial consensus. The automation dramatically lowers the cost of coordi-
nated inauthentic behavior, potentially overwhelming human fact-checking
capacity.

Perhaps most insidious is the erosion of trust. If people cannot reliably
determine whether videos, images, or audio are authentic, evidence itself
loses credibility. This "liar’s dividend" benefits bad actors who can dismiss
authentic evidence as fake. When caught in genuine wrongdoing captured
on video, they need only claim the video is a deepfake. In a world where
anything could be fake, nothing can be definitively proven to skeptical au-
diences. Journalism, legal proceedings, political discourse, and social trust
all suffer when shared reality becomes fundamentally contested.

Detection efforts face an adversarial arms race. Deepfake detection sys-
tems use machine learning to identify synthetic media by recognizing arti-
facts like unnatural eye blink patterns, inconsistent lighting across faces,
GAN fingerprints, or temporal inconsistencies. However, detection improve-
ment drives generative model improvement, as detectors get better, gener-
ative models evolve to evade detection. Today’s detection methods may fail
against tomorrow’s deepfakes, creating a perpetual cat-and-mouse game
where defense struggles to keep pace with offense.

Provenance tracking and authentication offer complementary approaches
using cryptographic methods to verify media authenticity. Content can be
signed at creation with digital signatures indicating source and document-
ing any modifications. Blockchain-based provenance creates immutable
records of content origin and chain of custody. Camera manufacturers and
editing software can embed authentication metadata in files. While these
approaches can’t prevent deepfakes, they enable verification of authentic
content. The challenge is adoption, systems only work if widely imple-
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mented across cameras, editing tools, and platforms.
Platform policies and content moderation involve social media compa-

nies detecting and limiting the spread of synthetic media through auto-
mated detection and human review, requiring disclosure labels on manipu-
lated content, and de-amplifying accounts repeatedly sharing misinforma-
tion. However, content moderation faces immense challenges at the scale
of modern platforms, billions of posts daily overwhelm human review. Au-
tomated systems make mistakes, risk censorship of legitimate content, and
must balance free expression concerns against harm prevention. Adver-
saries continuously adapt to evade detection.

Legal frameworks are evolving but lag behind technology. Some juris-
dictions have criminalized specific deepfake uses, non-consensual intimate
imagery, malicious impersonation, or election-related manipulation within
specified time windows before voting. Traditional laws addressing defama-
tion, fraud, and harassment may apply to some deepfake cases. However,
legal tools face limitations given the speed of online content spread, juris-
dictional challenges when creators, platforms, and victims span multiple
countries, and difficulty attributing content to specific individuals using
anonymizing technologies.

Media literacy education helps individuals critically evaluate informa-
tion sources, recognize manipulation techniques, verify claims through mul-
tiple independent sources, and avoid sharing unverified content. Building
public resilience against misinformation requires education from childhood
through adulthood. However, literacy alone cannot solve the problem when
synthetic content becomes truly indistinguishable from authentic content,
and even sophisticated users can be fooled by high-quality fakes.

Ultimately, addressing synthetic media and misinformation requires co-
ordinated multi-stakeholder action. Technology companies must invest in
detection and provenance. Governments must develop appropriate legal
frameworks and enforcement capabilities. Civil society organizations must
promote media literacy and fact-checking. Journalists and media organiza-
tions must adopt verification standards and transparency practices. No sin-
gle actor or approach suffices, only collective effort across sectors can build
resilience against synthetic media threats while preserving the benefits of
generative AI for legitimate uses.

10.11.5 AI Governance and Regulation
As AI’s societal impacts expand, governance and regulation become increas-
ingly necessary to ensure responsible development and deployment while
fostering innovation. Approaches vary globally, reflecting different regula-
tory philosophies, values, and priorities.

The European Union has pursued comprehensive AI regulation through
the proposed AI Act, representing the world’s first major attempt at hor-
izontal AI regulation. The Act adopts a risk-based framework categoriz-
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ing AI systems by potential harm. Unacceptable risk systems, social scor-
ing by governments, subliminal manipulation, real-time biometric identi-
fication in public spaces, are banned outright. High-risk systems includ-
ing critical infrastructure, law enforcement, employment, education, and
credit scoring face strict requirements: conformity assessment before de-
ployment, human oversight mechanisms, comprehensive technical docu-
mentation, transparency and information to users, accuracy and robustness
standards, and post-market monitoring and incident reporting. Limited-
risk systems like chatbots require transparency disclosures so users know
they’re interacting with AI. Minimal-risk systems like video games or spam
filters face no specific regulation. This graduated approach aims to protect
fundamental rights and safety while enabling innovation for lower-risk ap-
plications.

The United States has taken a more sectoral, decentralized approach
with different agencies regulating AI within their domains. The FDA reg-
ulates medical AI as medical devices, the FTC addresses algorithmic bias
and unfair practices in consumer protection, financial regulators oversee
AI in banking and lending, and states pass specific AI laws like Illinois’s
Biometric Information Privacy Act. The White House issues non-binding
AI principles and executive orders providing guidance but not enforceable
rules. This fragmented approach allows domain expertise and regulatory
flexibility but lacks comprehensive coordination and may leave gaps where
AI applications fall between regulatory domains.

China emphasizes AI development as a strategic national priority while
regulating specific applications to maintain social control. Regulations ad-
dress algorithmic recommendations requiring transparency and user con-
trol, deepfakes mandating disclosure and content labeling, and data pro-
tection limiting collection and use. The approach balances promoting a do-
mestic AI industry competitive with Western companies against ensuring
technologies don’t threaten social stability or party control.

Accountability mechanisms beyond formal regulation help ensure re-
sponsible AI. Impact assessments require organizations to evaluate poten-
tial harms before deploying AI systems. Algorithmic impact assessments
systematically consider fairness, privacy, security, and societal effects. Data
protection impact assessments, mandated by GDPR for high-risk process-
ing, identify and mitigate privacy risks. These assessments promote proac-
tive risk management and documentation of decision-making.

Audits verify AI systems comply with regulations, meet fairness and
accuracy standards, and operate as intended. Internal audits conducted
by organizations during development catch issues early. External audits
by independent third parties provide unbiased assessment and public ac-
countability. Ongoing audits of deployed systems monitor for performance
degradation, bias emergence, and compliance drift. Effective auditing re-
quires access to systems and data, technical expertise to evaluate complex
models, and clear standards defining what constitutes compliance.
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Certification schemes may emerge as AI technologies mature, similar
to product safety certification in other domains. Industry standards bod-
ies like IEEE and ISO develop technical standards for AI safety, fairness,
transparency, and performance. Certification programs could verify com-
pliance with standards, providing assurance to users, regulators, and the
public. However, achieving consensus on standards, ensuring meaningful
verification beyond checkbox compliance, and keeping standards current
with rapidly evolving technology present significant challenges.

Liability frameworks determine who bears responsibility when AI sys-
tems cause harm. Product liability doctrines may apply if AI systems are
considered defective products. Professional liability applies when profes-
sionals use AI tools in practice. Negligence claims may arise from inade-
quate testing, inappropriate deployment, or insufficient monitoring. How-
ever, AI complexity, involvement of multiple parties in development and
deployment, and difficulties proving causation in algorithmic decisions cre-
ate challenging liability questions. Clear frameworks are necessary for ac-
countability but difficult to design given AI’s unique characteristics.

10.11.6 Responsible AI Development
Beyond specific regulations and applications, responsible AI requires orga-
nizational practices and cultural norms that prioritize ethics throughout
development lifecycles.

Diverse and inclusive teams produce better AI systems that work for
everyone. Teams with varied backgrounds, perspectives, and lived experi-
ences are more likely to identify potential harms, recognize biases, antici-
pate impacts on different communities, and design for diverse users. Orga-
nizations should prioritize diversity in hiring across multiple dimensions,
race, gender, geography, socioeconomic background, domain expertise, and
create inclusive cultures where all voices are heard and valued, not just
those from dominant groups.

Ethics review boards provide oversight for AI projects similar to insti-
tutional review boards for human subjects research. These boards review
proposed projects for potential harms, assess whether benefits justify risks,
require modifications to address concerns, and monitor deployed systems
for emerging issues. Effective boards include diverse perspectives, domain
experts who understand application contexts, ethicists trained in norma-
tive reasoning, affected community representatives who understand lived
impacts, legal experts familiar with relevant regulations, and technical spe-
cialists who can evaluate implementation details.

Stakeholder engagement involves affected communities meaningfully in
AI development, not merely as users or subjects but as partners in design
and governance decisions. This includes conducting user testing with di-
verse populations, holding community consultations before deployment de-
cisions, establishing ongoing feedback mechanisms for deployed systems,
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and providing representation in governance structures. Those impacted by
AI systems should have power to shape how those systems affect them.

Documentation and transparency promote accountability and informed
decision-making. Model cards document model details including intended
uses, training data characteristics, performance metrics overall and by sub-
group, known limitations and potential biases, ethical considerations and
safeguards, and contact information for questions. Datasheets document
datasets including motivation for creation, composition and collection pro-
cess, preprocessing and cleaning applied, intended uses and inappropri-
ate uses, and distribution and maintenance plans. These documents help
users understand systems and make informed decisions about appropriate
deployment.

Responsible data practices respect privacy and dignity. Organizations
should collect only data necessary for specific purposes, anonymize or de-
identify data where possible while preserving utility, secure data against
unauthorized access and breaches, provide users control over their data in-
cluding access and deletion, and obtain informed consent clearly explaining
how data will be used. For AI training, consider whether general data col-
lection consent covers training use or requires specific permission.

Testing throughout development catches problems early. Evaluate per-
formance across demographic groups to detect disparate outcomes. Test for
disparate impact where protected groups experience systematically worse
treatment. Use fairness metrics appropriate to the application context. Ap-
ply bias mitigation techniques when disparities are found. Continuously
monitor deployed systems as populations and conditions change.

Robustness and safety testing ensure systems behave correctly under di-
verse conditions. Test on representative data reflecting deployment diver-
sity. Conduct adversarial testing to identify vulnerability to manipulation.
Perform failure mode analysis identifying how systems might fail and con-
sequences. Design graceful degradation so systems fail safely when they
must fail. Maintain human oversight for critical decisions where errors are
costly.

Cultural norms and values supporting responsible AI require organiza-
tional commitment beyond processes. Leadership must model ethical be-
havior, commit resources to responsible AI initiatives, and make ethics a
core value, not an afterthought. Organizations should encourage raising
concerns without fear of retaliation, empower anyone to escalate ethical is-
sues, reward responsible behavior including declining problematic projects,
provide ethics training for all employees working with AI, and foster open
discussion of ethical challenges without defensiveness.

10.11.7 AI for Social Good
While much discussion focuses on AI risks, the technology also offers tremen-
dous potential for addressing societal challenges and advancing human flour-



10.11. SOCIETAL IMPLICATIONS AND RESPONSIBLE AI 303

ishing when directed toward beneficial purposes.
Sustainability and climate action use AI for climate modeling improv-

ing prediction accuracy, optimizing energy grids to integrate intermittent
renewables, enabling precision agriculture that reduces water and fertil-
izer use, supporting wildlife conservation through automated monitoring,
and enhancing disaster response with better prediction and coordination.
Agriculture applications help small farmers optimize irrigation, detect crop
diseases early, and access market information previously available only to
large operations.

Healthcare and medical research applications accelerate drug discov-
ery through molecular design and screening, enable diagnosis in resource-
constrained settings using low-cost imaging and AI analysis, personalize
treatments matching therapies to individual patients, support mental health
through conversational AI providing accessible counseling, and improve epi-
demiology by predicting and tracking disease outbreaks. For billions lack-
ing access to specialist care, AI could dramatically improve health outcomes.

Education and accessibility applications provide personalized learning
adapting to individual student needs and pace, offer intelligent tutoring
supporting students outside classroom hours, create accessibility tools for
disabilities enabling participation, provide language translation breaking
down communication barriers, and expand educational access to under-
served populations without teachers. AI tutors could provide quality ed-
ucation in areas with teacher shortages.

Humanitarian applications include poverty mapping for targeted resource
allocation, refugee services providing information and support to displaced
populations, human rights monitoring documenting abuses through auto-
mated analysis of images and reports, disaster relief optimizing response
coordination, and agricultural assistance for subsistence farmers. These
applications address acute needs for vulnerable populations.

Scientific discovery accelerates across domains through AI assisting ma-
terials discovery, drug development, climate science, genomics, and fun-
damental physics research. AlphaFold’s breakthrough in protein struc-
ture prediction exemplifies AI advancing basic science with implications for
medicine and biology.

However, AI for social good must avoid common pitfalls. Technology is
not a panacea, social problems have complex root causes requiring multi-
faceted solutions addressing structural inequities, political dynamics, and
human behavior. AI alone cannot solve poverty, inequality, or climate change
without addressing these deeper issues. Paternalism risks imposing techni-
cal solutions without meaningful input from affected communities, ignoring
local context and preferences. Unintended consequences may arise as tech-
nologies designed for good are repurposed for harm, surveillance tools for
humanitarian work could enable oppression, facial recognition for finding
missing persons could enable authoritarianism.

Sustainability requires ongoing support beyond initial deployment. Many
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AI for social good projects fail when initial funding ends or when technical
expertise moves on. Solutions must be maintainable by local communities,
not dependent on external experts. Measuring actual impact on people’s
lives, not just technical metrics, ensures efforts address real needs. Gen-
uine partnership with affected communities, addressing root causes not just
symptoms, ensuring long-term sustainability and local ownership, guard-
ing against misuse, and rigorously measuring impact distinguish effective
social good initiatives from well-intentioned but ultimately unsuccessful ef-
forts.

10.12 Conclusion
This chapter has explored the practical realities of deploying AI systems
and the profound ethical questions they raise, from technical challenges of
scaling and compression to critical issues of fairness, privacy, safety, and
societal impact.

The journey through AI systems in practice revealed that building pow-
erful, accurate models is necessary but insufficient. Production systems re-
quire robust MLOps pipelines managing data quality, experiment tracking,
model versioning, deployment strategies, and continuous monitoring. Scal-
ing to massive models demands sophisticated distributed training orches-
trating parallelism across thousands of processors. Deploying on resource-
constrained edge devices requires aggressive compression balancing capa-
bility with efficiency. Each technical challenge has solutions, but implemen-
tation demands careful engineering and domain expertise.

The ethical dimensions prove equally complex and perhaps more con-
sequential. Bias and fairness require attention throughout the machine
learning pipeline, from data collection through deployment and monitor-
ing. Multiple mathematical definitions of fairness exist, often in funda-
mental tension, requiring value judgments about which to prioritize. Inter-
pretability and explainability help build trust, enable debugging, and sup-
port accountability, though perfect transparency remains elusive for com-
plex models. Privacy can be protected through differential privacy and fed-
erated learning, but privacy-utility tradeoffs force difficult decisions about
acceptable risks and performance degradation.

AI safety encompasses immediate concerns like adversarial robustness
and distribution shift alongside longer-term questions about alignment and
control of increasingly capable systems. Environmental impact demands
consideration as models grow larger, though technical and operational strate-
gies can substantially reduce carbon footprints. Societal implications span
employment disruption, healthcare transformation, criminal justice contro-
versies, misinformation threats, and governance challenges requiring coor-
dinated responses across technology, policy, and civil society.

Several themes emerge from this survey. Technical excellence alone does
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not ensure responsible AI, ethical considerations must integrate through-
out design and deployment, not bolted on afterward. AI development re-
quires multidisciplinary collaboration bringing together computer scien-
tists, domain experts, ethicists, social scientists, policymakers, and affected
communities. Transparency and accountability are essential for trust and
democratic oversight. Continuous monitoring and improvement are required
as systems, populations, and contexts evolve. Most fundamentally, AI sys-
tems should serve human values and collective wellbeing, not merely opti-
mize narrow technical objectives.

Looking forward, priorities crystallize. Research must continue advanc-
ing technical approaches to fairness, interpretability, privacy, robustness,
and alignment. Education must prepare practitioners with both technical
skills and ethical reasoning, integrating ethics throughout curricula. Gov-
ernance frameworks must mature providing clear, enforceable standards
balancing innovation with protection. Interdisciplinary collaboration must
deepen as AI impacts expand across all domains. Public engagement should
shape AI’s future through democratic deliberation about appropriate uses,
acceptable tradeoffs, and desirable futures.

We must maintain humility recognizing that current understanding will
evolve. What seems responsible today may appear insufficient tomorrow.
The field must remain open to criticism, adapt to new insights, and continu-
ously improve practices. Today’s best practices become tomorrow’s baseline
as understanding deepens.

AI offers immense potential to address humanity’s greatest challenges,
disease, poverty, climate change, scientific mysteries, and to augment hu-
man capabilities in ways that expand opportunity and flourishing. Realiz-
ing this potential while avoiding pitfalls requires sustained effort to develop
AI responsibly, governed by human values and serving collective good. The
technical capabilities of AI advance rapidly. Our collective ability to deploy
these systems responsibly, equitably, and in service of human flourishing
must keep pace. This is both the central challenge and the great opportu-
nity for AI’s next chapter.



Appendix A

Mathematical
Background

Artificial Intelligence relies heavily on a tripod of mathematical disciplines:
Linear Algebra, Calculus, and Probability. This appendix serves as a brief
refresher on the core concepts used throughout the text.

A.1 Linear Algebra
The language of data is linear algebra. To understand neural networks, one
must be comfortable with high-dimensional vector spaces.

A.1.1 Vectors and Matrices
A vector x ∈ Rn is an ordered array of n numbers. A matrix A ∈ Rm×n

represents a linear map from Rn to Rm.

A =

a11 . . . a1n
... . . . ...

am1 . . . amn


A.1.2 Matrix Operations
Matrix multiplication is the engine of deep learning. For C = AB, where
A is m× n and B is n× p, the element cij is the dot product of the i-th row
of A and the j-th column of B.

cij =

n∑
k=1

aikbkj
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A.1.3 Eigenvalues and Eigenvectors
For a square matrix A, an eigenvector v is a non-zero vector that changes
only by a scalar factor λ when A is applied to it:

Av = λv

This concept underpins Principal Component Analysis (PCA) and stability
analysis in recurrent networks.

A.2 Calculus and Optimization
Training AI models is fundamentally an optimization problem. We seek to
minimize a loss function by adjusting parameters.

A.2.1 The Gradient
The gradient ∇f points in the direction of steepest ascent. For a function
f : Rn → R:

∇f(x) =
[
∂f

∂x1
, . . . ,

∂f

∂xn

]T
In deep learning, we move in the direction of the negative gradient to min-
imize error.

A.2.2 The Chain Rule
The Chain Rule allows us to compute derivatives of composite functions. If
y = f(u) and u = g(x), then:

dy

dx
=
dy

du
· du
dx

This is the mathematical justification for the Backpropagation algorithm
used to train neural networks.

A.3 Probability Theory
Uncertainty is central to AI. Agents must make decisions with incomplete
information.

A.3.1 Bayes’ Theorem
Bayes’ Theorem describes how to update the probability of a hypothesis H
given evidence E:

P (H|E) =
P (E|H)P (H)

P (E)
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• P (H) is the prior probability.

• P (E|H) is the likelihood.

• P (H|E) is the posterior probability.



Appendix B

Technical Setup

B.1 Python Environment
The examples in this book are designed for Python 3.9 or later. We recom-
mend managing dependencies using conda or venv to avoid conflicts.

Listing B.1: Creating a Virtual Environment
1 python -m venv ai_env
2 source ai_env/bin/activate # On Windows: ai_env\Scripts\

activate
3 pip install numpy pandas matplotlib scikit -learn torch

B.2 GPU Acceleration
Deep learning requires significant computational power. To utilize NVIDIA
GPUs with PyTorch, ensure you have the correct CUDA toolkit installed for
your hardware.

Listing B.2: Checking for GPU Availability
1 import torch
2 if torch.cuda.is_available ():
3 device = torch.device("cuda")
4 print(f"Using␣GPU:␣{torch.cuda.get_device_name (0)}")
5 else:
6 device = torch.device("cpu")
7 print("Using␣CPU")
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Epilogue

We have reached the end of this volume, but not the end of the journey.
We began with the philosophical dreamers of the 1950s who dared to ask

if a machine could think. We traveled through the rigorous logic of search
algorithms, the probabilistic reasoning of Bayesian networks, and the high-
dimensional manifolds of deep learning. We concluded by looking at the
agents that now inhabit our world, systems that can see, speak, and act.

My goal in writing this book was to peel back the layers of hype and show
you the mathematical machinery that makes intelligence possible. I hope
you now see AI not as magic, but as a beautiful, complex, and occasionally
imperfect application of calculus and statistics.

As you move forward to build your own systems, remember the dual
nature of this technology. You now possess the tools to solve immense prob-
lems. You can diagnose diseases, optimize energy grids, and unlock creativ-
ity. However, with these tools comes the responsibility we discussed in the
final chapter. The algorithms you write will impact real lives. Code with
precision, but design with empathy.

The field of Artificial Intelligence is moving faster than any printed text
can capture. What is state-of-the-art today may be a historical footnote
tomorrow. However, the first principles will remain. The optimization land-
scapes, the bias-variance tradeoffs, and the Bellman equations are the bedrock.
Anchor yourself in these foundations, and you will be ready for whatever
comes next.

Thank you for letting me guide you this far. Now, it is your turn to cal-
culate.

— J. L.
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Glossary

Activation Function A mathematical function applied to the output of a
neural network node (e.g., ReLU, Sigmoid) to introduce non-linearity
to the model.

Agent An entity that perceives its environment through sensors and acts
upon it through actuators to achieve a goal.

Backpropagation The primary algorithm for training neural networks.
It uses the chain rule of calculus to compute gradients of the loss func-
tion with respect to the weights.

Bellman Equation A recursive equation used in Reinforcement Learning
that expresses the value of a state in terms of the immediate reward
and the value of the next state.

Bias (Inductive) The set of assumptions that a learner uses to predict
outputs for inputs it has not encountered.

Convolutional Neural Network (CNN) A class of deep neural networks,
most commonly applied to analyzing visual imagery, which uses con-
volution operations to capture spatial hierarchies.

Eigenvalue A scalar associated with a linear system of equations that rep-
resents the magnitude of stretch during a linear transformation.

Entropy A measure of the impurity or disorder in a set of examples. It is
a fundamental concept in Information Theory and Decision Trees.

Gradient Descent An iterative optimization algorithm for finding a local
minimum of a differentiable function.

Heuristic A technique designed for solving a problem more quickly when
classic methods are too slow. It trades optimality, completeness, or
accuracy for speed.

Large Language Model (LLM) A type of AI model trained on vast amounts
of text data that can generate human-like text and perform various
language tasks.

311



312 GLOSSARY

Markov Decision Process (MDP) A discrete-time stochastic control pro-
cess providing a mathematical framework for modeling decision mak-
ing in situations where outcomes are partly random and partly under
the control of a decision maker.

Overfitting A modeling error that occurs when a function is too closely
fit to a limited set of data points. It captures noise rather than the
underlying pattern.

Reinforcement Learning A type of machine learning where an agent
learns to make decisions by performing actions and receiving rewards
or penalties.

Transformer A deep learning architecture based on the multi-head atten-
tion mechanism. It has revolutionized Natural Language Processing
by handling long-range dependencies efficiently.

Turing Test A test of a machine’s ability to exhibit intelligent behavior
equivalent to, or indistinguishable from, that of a human.
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